Mulukutla BC, Kale J, Kalomeris T, Jacobs M, Hiller GW. Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells. Biotechnol Bioeng. 2017;114(8):1779–90.
Article
CAS
PubMed
Google Scholar
Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32(10):992–1000.
Article
CAS
PubMed
Google Scholar
Lee N, Shin J, Park JH, Lee GM, Cho S, Cho BK. Targeted gene deletion using DNA-Free RNA-guided Cas9 nuclease accelerates adaptation of CHO cells to suspension culture. ACS Synth Biol. 2016;5(11):1211–9.
Article
CAS
PubMed
Google Scholar
Usaj M, Zattelman L, Regev R, Shneyer BI, Wiesel-Motiuk N, Henn A. Overexpression and purification of human myosins from transiently and stably transfected suspension adapted HEK293SF-3F6 cells. Anal Biochem. 2018;558:19–27.
Article
CAS
PubMed
Google Scholar
Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, et al. BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng. 2010;105(2):330–40.
Article
CAS
PubMed
Google Scholar
Albrecht S, Kaisermayer C, Gallagher C, Farrell A, Lindeberg A, Bones J. Proteomics in biomanufacturing control: protein dynamics of CHO-K1 cells and conditioned media during apoptosis and necrosis. Biotechnol Bioeng. 2018;115(6):1509–20.
Article
CAS
PubMed
Google Scholar
Krampe B, Al-Rubeai M. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology. 2010;62(3):175–88.
Article
PubMed
PubMed Central
Google Scholar
Sung YH, Lee JS, Park SH, Koo J, Lee GM. Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng. 2007;9(5–6):452–64.
Article
CAS
PubMed
Google Scholar
Zarredar H, Pashapour S, Farajnia S, Ansarin K, Baradaran B, Ahmadzadeh V, et al. Targeting the KRAS, p38alpha, and NF-kappaB in lung adenocarcinoma cancer cells: the effect of combining RNA interferences with a chemical inhibitor. J Cell Biochem. 2019;120(6):10670–7.
Article
CAS
PubMed
Google Scholar
Safari F, Rahmani Barouji S, Tamaddon AM. Strategies for improving siRNA-induced gene silencing efficiency. Adv Pharm Bull. 2017;7(4):603–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Safari F, Tamaddon AM, Zarghami N, Abolmali S, Akbarzadeh A. Polyelectrolyte complexes of hTERT siRNA and polyethyleneimine: effect of degree of PEG grafting on biological and cellular activity. Artif Cells Nanomed Biotechnol. 2016;44(6):1561–8.
Article
CAS
PubMed
Google Scholar
Lee JS, Grav LM, Lewis NE, Faustrup KH. CRISPR/Cas9-mediated genome engineering of CHO cell factories: application and perspectives. Biotechnol J. 2015;10(7):979–94.
Article
CAS
PubMed
Google Scholar
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.
Article
CAS
PubMed
Google Scholar
Su X, Wang S, Su G, Zheng Z, Zhang J, Ma Y, et al. Production of microhomologous-mediated site-specific integrated LacS gene cow using TALENs. Theriogenology. 2018;119:282–8.
Article
CAS
PubMed
Google Scholar
Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, et al. Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther. 2011;11(1):11–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawabe Y, Komatsu S, Komatsu S, Murakami M, Ito A, Sakuma T, et al. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems. J Biosci Bioeng. 2018;125(5):599–605.
Article
CAS
PubMed
Google Scholar
Safari F, Farajnia S, Ghasemi Y, Zarghami N. New developments in CRISPR technology: improvements in specificity and efficiency. Curr Pharm Biotechnol. 2017;18(13):1038–54.
Article
CAS
PubMed
Google Scholar
Safari F, Hatam G, Behbahani AB, Rezaei V, Barekati-Mowahed M, Petramfar P, et al. CRISPR system: a high-throughput toolbox for research and treatment of Parkinson’s disease. Cell Mol Neurobiol. 2019;40:477–93.
Article
PubMed
CAS
Google Scholar
Farajnia S, Ghasemi Y, Zarghami N, Barekati-Mowahed M. Multiplex genome Engineering in Chinese hamster ovary cells using all-in-one and HITI CRISPR technology. Adv Pharm Bull. 2020.
Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol. 2018;40(3):201–11.
Article
CAS
PubMed
Google Scholar
Safari F, Sharifi M, Farajnia S, Akbari B, Karimi Baba Ahmadi M, Negahdaripour M, et al. The interaction of phages and bacteria: the co-evolutionary arms race. Crit Rev Biotechnol. 2020;40(2):119–37.
Article
CAS
PubMed
Google Scholar
Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci. 2019;9:36.
Article
PubMed
PubMed Central
Google Scholar
Grav LM, Lee JS, Gerling S, Kallehauge TB, Hansen AH, Kol S, et al. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol J. 2015;10(9):1446–56.
Article
CAS
PubMed
Google Scholar
Kim YG, Kim JY, Lee GM. Effect of XIAP overexpression on sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells producing erythropoietin. J Biotechnol. 2009;144(4):299–303.
Article
CAS
PubMed
Google Scholar
Baik JY, Joo EJ, Kim YH, Lee GM. Limitations to the comparative proteomic analysis of thrombopoietin producing Chinese hamster ovary cells treated with sodium butyrate. J Biotechnol. 2008;133(4):461–8.
Article
CAS
PubMed
Google Scholar
Yin B, Wang Q, Chung CY, Ren X, Bhattacharya R, Yarema KJ, et al. Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Biotechnol Bioeng. 2018;115(6):1531–41.
Article
CAS
PubMed
Google Scholar
Han S, Rhee WJ. Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture. Biotechnol Bioeng. 2018;115(5):1331–9.
Article
CAS
PubMed
Google Scholar
Sung YH, Hwang SJ, Lee GM. Influence of down-regulation of caspase-3 by siRNAs on sodium-butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng. 2005;7(5–6):457–66.
Article
CAS
PubMed
Google Scholar
Kim NS, Lee GM. Inhibition of sodium butyrate-induced apoptosis in recombinant Chinese hamster ovary cells by constitutively expressing antisense RNA of caspase-3. Biotechnol Bioeng. 2002;78(2):217–28.
Article
CAS
PubMed
Google Scholar
Hwang SO, Lee GM. Effect of Akt overexpression on programmed cell death in antibody-producing Chinese hamster ovary cells. J Biotechnol. 2009;139(1):89–94.
Article
CAS
PubMed
Google Scholar
Wong DC, Wong KT, Nissom PM, Heng CK, Yap MG. Targeting early apoptotic genes in batch and fed-batch CHO cell cultures. Biotechnol Bioeng. 2006;95(3):350–61.
Article
CAS
PubMed
Google Scholar
Xiong K, Marquart KF, la Cour KKJ, Li S, Shamie I, Lee JS, et al. Reduced apoptosis in Chinese hamster ovary cells via optimized CRISPR interference. Biotechnol Bioeng. 2019;116(7):1813–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yun CY, Liu S, Lim SF, Wang T, Chung BY, Jiat Teo J, et al. Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures. Metab Eng. 2007;9(5–6):406–18.
Article
CAS
PubMed
Google Scholar
Connolly P, Garcia-Carpio I, Villunger A. Cell-cycle cross talk with caspases and their substrates. Cold Spring Harb Perspect Biol. 2020;12(6):a036475.
Article
PubMed
PubMed Central
Google Scholar
Fattman CL, Delach SM, Dou QP, Johnson DE. Sequential two-step cleavage of the retinoblastoma protein by caspase-3/-7 during etoposide-induced apoptosis. Oncogene. 2001;20(23):2918–26.
Article
CAS
PubMed
Google Scholar
Jänicke RU, Walker PA, Lin XY, Porter AG. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J. 1996;15(24):6969–78.
Article
PubMed
PubMed Central
Google Scholar
Matsuura K, Wakasugi M, Yamashita K, Matsunaga T. Cleavage-mediated activation of Chk1 during apoptosis. J Biol Chem. 2008;283(37):25485–91.
Article
CAS
PubMed
Google Scholar
Okita N, Yoshimura M, Watanabe K, Minato S, Kudo Y, Higami Y, et al. CHK1 cleavage in programmed cell death is intricately regulated by both caspase and non-caspase family proteases. Biochim Biophys Acta. 2013;1830(1):2204–13.
Article
CAS
PubMed
Google Scholar
Hashimoto T, Kikkawa U, Kamada S. Contribution of caspase(s) to the cell cycle regulation at mitotic phase. PLoS ONE. 2011;6(3):e18449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardona M, Lopez JA, Serafin A, Rongvaux A, Inserte J, Garcia-Dorado D, et al. Executioner caspase-3 and 7 deficiency reduces myocyte number in the developing mouse heart. PLoS ONE. 2015;10(6):e0131411.
Article
PubMed
PubMed Central
CAS
Google Scholar
Svandova E, Lesot H, Vanden Berghe T, Tucker AS, Sharpe PT, Vandenabeele P, et al. Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis. 2014;5(8):e1366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Datta P, Yang B, Linhardt RJ, Sharfstein ST. Modulation of heparan sulfate biosynthesis by sodium butyrate in recombinant CHO cells. Cytotechnology. 2015;67(2):223–35.
Article
CAS
PubMed
Google Scholar
Salimi V, Shahsavari Z, Safizadeh B, Hosseini A, Khademian N, Tavakoli-Yaraki M. Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids Health Dis. 2017;16(1):208.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hausmann G, O’Reilly LA, van Driel R, Beaumont JG, Strasser A, Adams JM, et al. Pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1) has a cytoplasmic localization distinct from Bcl-2 or Bcl-x(L). J Cell Biol. 2000;149(3):623–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, et al. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 2002;419(6907):634–7.
Article
CAS
PubMed
Google Scholar
Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science. 2006;311(5762):847–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar N, Afjei R, Massoud TF, Paulmurugan R. Comparison of cell-based assays to quantify treatment effects of anticancer drugs identifies a new application for Bodipy-L-cystine to measure apoptosis. Sci Rep. 2018;8(1):16363.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lotze MT, Thomson AW. Measuring Immunity: basic science and clinical practice. Amsterdam: Elsevier; 2011.
Google Scholar
Sauerwald TM, Oyler GA, Betenbaugh MJ. Study of caspase inhibitors for limiting death in mammalian cell culture. Biotechnol Bioeng. 2003;81(3):329–40.
Article
CAS
PubMed
Google Scholar
Henry MN, MacDonald MA, Orellana CA, Gray PP, Gillard M, Baker K, et al. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Biotechnol Bioeng. 2020;117(4):1187–203.
Article
CAS
PubMed
Google Scholar
Suzuki K, Izpisua Belmonte JC. In vivo genome editing via the HITI method as a tool for gene therapy. J Hum Genet. 2018;63(2):157–64.
Article
CAS
PubMed
Google Scholar
Zare K, Shademan M, Ghahramani Seno MM, Dehghani H. CRISPR/Cas9 knockout strategies to ablate CCAT1 lncRNA gene in cancer cells. Biol Proced Online. 2018;20:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. 2016;540(7631):144–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep. 2014;4:5400.
Article
CAS
PubMed
PubMed Central
Google Scholar