American Psychiatric Association. DSM-V. 2013; 1.
Bromet EJ, Bromet EJ, Fennig S, Fennig S. Epidemiology and natural history of schizophrenia. Biol Psychiatry. 1999;46(7):871–81.
Article
CAS
PubMed
Google Scholar
Senkowski D, Gallinat J. Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biol Psychiatry. 2015;77(12):1010–9.
Article
PubMed
Google Scholar
Basar-Eroglu, Brand A, Hildebrandt H, Karolina Kedzior K, Mathes B, Schmiedt C. Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol. 2007;64(1):39–45.
Article
PubMed
Google Scholar
Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z, Sampson AR, Lewis DA. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci. 2003;23(15):6315–26.
CAS
PubMed
Google Scholar
Brixey SN, Gallagher BJ, McFalls JA, Parmelee LF. Gestational and neonatal factors in the etiology of schizophrenia. J Clin Psychol. 1993;49(3):447–56.
Article
CAS
PubMed
Google Scholar
Park S, Holzman PS. Schizophrenics show spatial working memory deficits. Arch Gen Psychiatry. 1992;49(12):975–82.
Article
CAS
PubMed
Google Scholar
Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14(3):477–85.
Article
CAS
PubMed
Google Scholar
Lee J, Park S. Working memory impairments in schizophrenia: a meta-analysis. J Abnorm Psychol. 2005;114(4):599–611.
Article
PubMed
Google Scholar
Hepp HH, Maier S, Hermle L, Spitzer M. The Stroop effect in schizophrenic patients. Schizophr Res. 1996;22(3):187–95.
Article
CAS
PubMed
Google Scholar
Gold JM, Carpenter C, Randolph C, Goldberg TE, Weinberger DR. Auditory Working Memory and wisconsin card sorting test performance in schizophrenia. Arch Gen Psychiatry. 1997;54:159–65.
Article
CAS
PubMed
Google Scholar
Fuster JM. The prefrontal cortex—an update: time is of the essence. Neuron. 2001;30(2):319–33.
Article
CAS
PubMed
Google Scholar
Barch DM. The cognitive neuroscience of schizophrenia. Annu Rev Clin Psychol. 2005;1:321–53.
Article
PubMed
Google Scholar
Lewis DA. Cortical circuit dysfunction and cognitive deficits in schizophrenia—implications for preemptive interventions. Eur J Neurosci. 2012;35(12):1871–8.
Article
PubMed
PubMed Central
Google Scholar
Lesh TA, Niendam TA, Minzenberg MJ, Carter CS. Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology. 2011;36(1):316–38.
Article
PubMed
PubMed Central
Google Scholar
Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.
Article
CAS
PubMed
Google Scholar
Cho RY, Konecky RO, Carter CS. Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA. 2006;103(52):19878–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yeragani VK, Cashmere D, Miewald J, Tancer M, Keshavan MS. Decreased coherence in higher frequency ranges (beta and gamma) between central and frontal EEG in patients with schizophrenia: a preliminary report. Psychiatry Res. 2006;141(1):53–60.
Article
PubMed
Google Scholar
Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11(2):100–13.
Article
CAS
PubMed
Google Scholar
Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, Braff DL. Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry. 2006;60(11):1231–40.
Article
PubMed
Google Scholar
Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci. 2009;32:209–24.
Article
CAS
PubMed
Google Scholar
Bosman CA, Lansink CS, Pennartz CMA. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems. Eur J Neurosci. 2014;39(11):1982–99.
Article
PubMed
Google Scholar
Barch DM, Ceaser A. Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci. 2012;16(1):27–34.
Article
PubMed
Google Scholar
Farzan F, Barr MS, Sun Y, Fitzgerald PB, Daskalakis ZJ. Transcranial magnetic stimulation on the modulation of gamma oscillations in schizophrenia. Ann NY Acad Sci. 2012;1265:25–35.
Article
PubMed
Google Scholar
Casanova MF, Kreczmanski P, Trippe J, Switala A, Heinsen H, Steinbusch HWM, Schmitz C. Neuronal distribution in the neocortex of schizophrenic patients. Psychiatry Res. 2008;158(3):267–77.
Article
PubMed
Google Scholar
Garey L. When cortical development goes wrong: schizophrenia as a neurodevelopmental disease of microcircuits. J Anat. 2010;217(4):324–33.
Article
PubMed
PubMed Central
Google Scholar
Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry. 2000;57(3):237–45.
Article
CAS
PubMed
Google Scholar
Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA. Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry. 2008;165(4):479–89.
Article
PubMed
PubMed Central
Google Scholar
Bristow GC, Bostrom JA, Haroutunian V, Sodhi MS. Sex differences in GABAergic gene expression occur in the anterior cingulate cortex in schizophrenia. Schizophr Res. 2015;167:57.
Article
PubMed
Google Scholar
Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6(4):312–24.
Article
CAS
PubMed
Google Scholar
Fine R, Zhang J, Stevens HE. Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders. Mol Psychiatry. 2014;19(6):641–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez-Burgos G, Cho RY, Lewis DA. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry. 2015;77(12):1031–40.
Article
CAS
PubMed
Google Scholar
Freund TF. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci. 2003;26(9):489–95.
Article
CAS
PubMed
Google Scholar
Lewis DA, Curley AA, Glausier JR, Volk DW. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35(1):57–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L-H, Moore CI. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459(7247):663–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones P, Rodgers B, Murray R, Marmot M. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet. 1994;344(8934):1398–402.
Article
CAS
PubMed
Google Scholar
Cannon TD, van Erp TGM, Bearden CE, Loewy R, Thompson P, Toga AW, Huttunen MO, Keshavan MS, Seidman LJ, Tsuang MT. Early and late neurodevelopmental influences in the prodrome to schizophrenia: contributions of genes, environment, and their interactions. Schizophr Bull. 2003;29(4):653–69.
Article
PubMed
Google Scholar
Catts VS, Fung SJ, Long LE, Joshi D, Vercammen A, Allen KM, Fillman SG, Rothmond DA, Sinclair D, Tiwari Y, Tsai S-Y, Weickert TW, ShannonWeickert C. Rethinking schizophrenia in the context of normal neurodevelopment. Front Cell Neurosci. 2013;7:60.
Article
PubMed
PubMed Central
Google Scholar
Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, Kato T. Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol Psychiatry. 2008;63(5):530–3.
Article
CAS
PubMed
Google Scholar
Zecevic N, Hu F, Jakovcevski I. Interneurons in the developing human neocortex. Dev Neurobiol. 2011;71(1):18–33.
Article
PubMed
PubMed Central
Google Scholar
Opris I, Casanova MF. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain. 2014;137(Pt 7):1863–75.
Article
PubMed
PubMed Central
Google Scholar
Arnold SE. Neurodevelopmental abnormalities in schizophrenia: insights from neuropathology. Dev Psychopathol. 1999;11(3):439–56.
Article
CAS
PubMed
Google Scholar
Beneyto M, Lewis DA. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. Int J Dev Neurosci. 2011;29(3):295–304.
Article
PubMed
PubMed Central
Google Scholar
King S, Laplante D, Joober R. Understanding putative risk factors for schizophrenia: retrospective and prospective studies. J Psychiatry Neurosci. 2005;30(5):342–8.
PubMed
PubMed Central
Google Scholar
Huttunen MO, Niskanen P. Prenatal loss of father and psychiatric disorders. Arch Gen Psychiatry. 1978;35(4):429–31.
Article
CAS
PubMed
Google Scholar
van Os J, Selten JP. Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br J Psychiatry. 1998;172:324–6.
Article
PubMed
Google Scholar
Betts KS, Williams GM, Najman JM, Scott J, Alati R. Exposure to stressful life events during pregnancy predicts psychotic experiences via behaviour problems in childhood. J Psychiatr Res. 2014;59:132–9.
Article
PubMed
Google Scholar
Levine SZ, Levav I, Yoffe R, Pugachova I. The effects of pre-natal-, early-life- and indirectly-initiated exposures to maximum adversities on the course of schizophrenia. Schizophr Res. 2014;158(1–3):236–40.
Article
PubMed
Google Scholar
Mennes M, Stiers P, Lagae L, Van den Bergh B. Long-term cognitive sequelae of antenatal maternal anxiety: involvement of the orbitofrontal cortex. Neurosci Biobehav Rev. 2006;30(8):1078–86.
Article
PubMed
Google Scholar
Entringer S, Buss C, Kumsta R, Hellhammer DH, Wadhwa PD, Wust S. Prenatal psychosocial stress exposure is associated with subsequent working memory performance in young women. Behav Neurosci. 2009;123(4):886–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buss C, Davis EP, Hobel CJ, Sandman CA. Maternal pregnancy-specific anxiety is associated with child executive function at 6–9 years age. Stress. 2011;14(6):665–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwabe K, Enkel T, Klein S, Schütte M, Koch M. Effects of neonatal lesions of the medial prefrontal cortex on adult rat behaviour. Behav Brain Res. 2004;153(1):21–34.
Article
CAS
PubMed
Google Scholar
Uylings HBM, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex? Behav Brain Res. 2003;146(1–2):3–17.
Article
PubMed
Google Scholar
Gue M, Bravard A, Meunier J, Veyrier R, Gaillet S, Recasens M, Maurice T. Sex differences in learning deficits induced by prenatal stress in juvenile rats. Behav Brain Res. 2004;150(1–2):149–57.
Article
PubMed
Google Scholar
Negrón-Oyarzo I, Neira D, Espinosa N, Fuentealba P, Aboitiz F. Prenatal
stress produces persistence of remote memory and disrupts functional connectivity in the hippocampal-prefrontal cortex axis. Cereb Cortex. 2015;25(9):3132–43.
Article
PubMed
Google Scholar
Bingham BC, Sheela Rani CS, Frazer A, Strong R, Morilak DA. Exogenous prenatal corticosterone exposure mimics the effects of prenatal stress on adult brain stress response systems and fear extinction behavior. Psychoneuroendocrinology. 2013;38(11):2746–57.
Article
CAS
PubMed
Google Scholar
Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev. 2008;32(6):1073–86.
Article
CAS
PubMed
Google Scholar
Richetto J, Riva MA. Prenatal maternal factors in the development of cognitive impairments in the offspring. J Reprod Immunol. 2014;104–105:20–5.
Article
PubMed
Google Scholar
Moore H, Susser E. Relating the effects of prenatal stress in rodents to the pathogenesis of schizophrenia. Biol Psychiatry. 2011;70(10):906–7.
Article
PubMed
PubMed Central
Google Scholar
Nieuwenhuis ILC, Takashima A. The role of the ventromedial prefrontal cortex in memory consolidation. Behav Brain Res. 2010;218(2):325–34.
Article
PubMed
Google Scholar
Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci. 2005;6(2):119–30.
Article
CAS
PubMed
Google Scholar
Muhammad A, Carroll C, Kolb B. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex. Neuroscience. 2012;216:103–9.
Article
CAS
PubMed
Google Scholar
Mychasiuk R, Gibb R, Kolb B. Prenatal stress alters dendritic morphology and synaptic connectivity in the prefrontal cortex and hippocampus of developing offspring. Synapse. 2012;66(4):308–14.
Article
CAS
PubMed
Google Scholar
Markham JA, Mullins SE, Koenig JI. Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. J Comp Neurol. 2013;521(8):1828–43.
Article
PubMed
PubMed Central
Google Scholar
Uchida T, Furukawa T, Iwata S, Yanagawa Y, Fukuda A. Selective loss of parvalbumin-positive GABAergic interneurons in the cerebral cortex of maternally stressed Gad1-heterozygous mouse offspring. Transl Psychiatry. 2014;4:e371.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O’Donovan MC, Corvin A, Cichon S, Sullivan PF. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry 2015; 1–8.
Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry. 2008;13(1):36–64.
Article
CAS
PubMed
Google Scholar
Merelo V, Durand D, Lescallette AR, Vrana KE, Hong LE, Faghihi MA, Bellon A. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci. 2015;8:57.
Article
PubMed
PubMed Central
Google Scholar
Ahmed AO, Mantini AM, Fridberg DJ, Buckley PF. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis. Psychiatry Res. 2015;226(1):1–13.
Article
PubMed
CAS
Google Scholar
DeSilva U, D’Arcangelo G, Braden VV, Chen J, Miao GG, Curran T, Green ED. The human reelin gene: isolation, sequencing, and mapping on chromosome 7. Genome Res. 1997;7(2):157–64.
Article
CAS
PubMed
Google Scholar
Royaux I, Lambert de Rouvroit C, D’Arcangelo G, Demirov D, Goffinet AM. Genomic organization of the mouse reelin gene. Genomics. 1997;46(2):240–50.
Article
CAS
PubMed
Google Scholar
Grayson DR, Chen Y, Costa E, Dong E, Guidotti A, Kundakovic M, Sharma RP. The human reelin gene: transcription factors (+), repressors (−) and the methylation switch (±) in schizophrenia. Pharmacol Ther. 2006;111(1):272–86.
Article
CAS
PubMed
Google Scholar
Frotscher M. Role for Reelin in stabilizing cortical architecture. Trends Neurosci. 2010;33(9):407–14.
Article
CAS
PubMed
Google Scholar
Lewis DA, Mirnics K. Transcriptome alterations in schizophrenia: disturbing the functional architecture of the dorsolateral prefrontal cortex. Prog Brain Res. 2006;158:141–52.
Article
CAS
PubMed
Google Scholar
Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C. Dendritic spine hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia vulnerability. Neurobiol Dis. 2001;8(5):723–42.
Article
CAS
PubMed
Google Scholar
Fatemi SH, Earle JA, McMenomy T. Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol. Psychiatry. 2000;5(6):571, 654–63.
Google Scholar
Fatemi SH. Reelin glycoprotein: structure, biology and roles in health and disease. Mol Psychiatry. 2005;10(3):251–7.
Article
CAS
PubMed
Google Scholar
Folsom TD, Fatemi SH. The involvement of Reelin in neurodevelopmental disorders. Neuropharmacology. 2013;68:122–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alcantara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, Sotelo C, Soriano E. Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci. 1998;18(19):7779–99.
CAS
PubMed
Google Scholar
Tissir F, Lambert de Rouvroit C, Goffinet AM. The role of reelin in the development and evolution of the cerebral cortex. Braz J Med Biol Res. 2002;35(12):1473–84.
Article
CAS
PubMed
Google Scholar
Tissir F, Goffinet AM. Reelin and brain development. Nat Rev Neurosci. 2003;4(6):496–505.
Article
CAS
PubMed
Google Scholar
Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E, Ernfors P, Ibanez CF. BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron. 1998;21(2):305–15.
Article
CAS
PubMed
Google Scholar
Ma J, Yao X-H, Fu Y, Yu Y-C. Development of layer 1 neurons in the mouse neocortex. Cereb Cortex. 2014;24(10):2604–18.
Article
PubMed
Google Scholar
Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E, Guidotti A, Caruncho HJ. Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci USA. 1998;95(6):3221–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuentealba P, Klausberger T, Karayannis T, Suen WY, Huck J, Tomioka R, Rockland K, Capogna M, Studer M, Morales M, Somogyi P. Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus. J Neurosci. 2010;30(5):1595–609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lambert de Rouvroit C, Goffinet AM. A new view of early cortical development. Biochem Pharmacol. 1998;56(11):1403–9.
Article
CAS
PubMed
Google Scholar
Gilmore EC, Herrup K. Cortical development: receiving reelin. Curr Biol. 2000;10(4):R162–6.
Article
CAS
PubMed
Google Scholar
Gupta A, Tsai L-H, Wynshaw-Boris A. Life is a journey: a genetic look at neocortical development. Nat Rev Genet. 2002;3(5):342–55.
Article
CAS
PubMed
Google Scholar
D’Arcangelo G, Miao GG, Curran T. Detection of the reelin breakpoint in reeler mice. Brain Res Mol Brain Res. 1996;39(1–2):234–6.
Article
PubMed
Google Scholar
Hevner RF, Daza RAM, Englund C, Kohtz J, Fink A. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience. 2004;124(3):605–18.
Article
CAS
PubMed
Google Scholar
Hammond V, So E, Gunnersen J, Valcanis H, Kalloniatis M, Tan S-S. Layer positioning of late-born cortical interneurons is dependent on Reelin but not p35 signaling. J Neurosci. 2006;26(5):1646–55.
Article
CAS
PubMed
Google Scholar
Curran T, D’Arcangelo G. Role of reelin in the control of brain development. Brain Res Brain Res Rev. 1998;26(2–3):285–94.
Article
CAS
PubMed
Google Scholar
Costa E, Davis J, Pesold C, Tueting P, Guidotti A. The heterozygote reeler mouse as a model for the development of a new generation of antipsychotics. Curr Opin Pharmacol. 2002;2(1):56–62.
Article
CAS
PubMed
Google Scholar
Badea A, Nicholls PJ, Johnson GA, Wetsel WC. Neuroanatomical phenotypes in the reeler mouse. Neuroimage. 2007;34(4):1363–74.
Article
PubMed
PubMed Central
Google Scholar
Niu S, Yabut O, D’Arcangelo G. The Reelin signaling pathway promotes dendritic spine development in hippocampal neurons. J Neurosci. 2008;28(41):10339–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu WS, Pesold C, Rodriguez MA, Carboni G, Auta J, Lacor P, Larson J, Condie BG, Guidotti A, Costa E. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse. Proc Natl Acad Sci USA. 2001;98(6):3477–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nullmeier S, Panther P, Dobrowolny H, Frotscher M, Zhao S, Schwegler H, Wolf R. Region-specific alteration of GABAergic markers in the brain of heterozygous reeler mice. Eur J Neurosci. 2011;33(4):689–98.
Article
CAS
PubMed
Google Scholar
Carboni G, Tueting P, Tremolizzo L, Sugaya I, Davis J, Costa E, Guidotti A. Enhanced dizocilpine efficacy in heterozygous reeler mice relates to GABA turnover downregulation. Neuropharmacology. 2004;46(8):1070–81.
Article
CAS
PubMed
Google Scholar
Borrell V, Del Rio JA, Alcantara S, Derer M, Martinez A, D’Arcangelo G, Nakajima K, Mikoshiba K, Derer P, Curran T, Soriano E. Reelin regulates the development and synaptogenesis of the layer-specific entorhino-hippocampal connections. J Neurosci. 1999;19(4):1345–58.
CAS
PubMed
Google Scholar
Chen Y, Beffert U, Ertunc M, Tang T-S, Kavalali ET, Bezprozvanny I, Herz J. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci. 2005;25(36):8209–16.
Article
CAS
PubMed
Google Scholar
Herz J, Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci. 2006;7(11):850–9.
Article
CAS
PubMed
Google Scholar
Qiu S, Weeber EJ. Reelin signaling facilitates maturation of CA1 glutamatergic synapses. J Neurophysiol. 2007;97(3):2312–21.
Article
CAS
PubMed
Google Scholar
Rogers JT, Rusiana I, Trotter J, Zhao L, Donaldson E, Pak DTS, Babus LW, Peters M, Banko JL, Chavis P, Rebeck GW, Hoe H-S, Weeber EJ. Reelin supplementation enhances cognitive ability, synaptic plasticity, and dendritic spine density. Learn Mem. 2011;18(9):558–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ventruti A, Kazdoba TM, Niu S, D’Arcangelo G. Reelin deficiency causes specific defects in the molecular composition of the synapses in the adult brain. Neuroscience. 2011;189:32–42.
Article
CAS
PubMed
Google Scholar
Hellwig S, Hack I, Kowalski J, Brunne B, Jarowyj J, Unger A, Bock HH, Junghans D, Frotscher M. Role for Reelin in neurotransmitter release. J Neurosci. 2011;31(7):2352–60.
Article
CAS
PubMed
Google Scholar
Iafrati J, Orejarena MJ, Lassalle O, Bouamrane L, Gonzalez-Campo C, Chavis P. Reelin, an extracellular matrix protein linked to early onset psychiatric diseases, drives postnatal development of the prefrontal cortex via GluN2B-NMDARs and the mTOR pathway. Mol Psychiatry. 2014;19(4):417–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E. A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA. 1998;95(26):15718–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000;57(11):1061–9.
Article
CAS
PubMed
Google Scholar
Eastwood SL, Harrison PJ. Interstitial white matter neurons express less reelin and are abnormally distributed in schizophrenia: towards an integration of molecular and morphologic aspects of the neurodevelopmental hypothesis. Mol Psychiatry. 2003;8(9):769, 821–31.
Article
CAS
Google Scholar
Habl G, Schmitt A, Zink M, von Wilmsdorff M, Yeganeh-Doost P, Jatzko A, Schneider-Axmann T, Bauer M, Falkai P. Decreased reelin expression in the left prefrontal cortex (BA9) in chronic schizophrenia patients. Neuropsychobiology. 2012;66(1):57–62.
Article
CAS
PubMed
Google Scholar
Klengel T, Pape J, Binder EB, Mehta D. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology. 2014;80:115–32.
Article
CAS
PubMed
Google Scholar
Schmitt A, Malchow B, Hasan A, Falkai P. The impact of environmental factors in severe psychiatric disorders. Front Neurosci. 2014;8:19.
Article
PubMed
PubMed Central
Google Scholar
Provencal N, Binder EB. The effects of early life stress on the epigenome: from the womb to adulthood and even before. Exp Neurol. 2015;268:10–20.
Article
PubMed
Google Scholar
Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res. 2002;30(13):2930–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abdolmaleky HM, Cheng K, Russo A, Smith CL, Faraone SV, Wilcox M, Shafa R, Glatt SJ, Nguyen G, Ponte JF, Thiagalingam S, Tsuang MT. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet. 2005;134B(1):60–6.
Article
PubMed
Google Scholar
Tamura Y, Kunugi H, Ohashi J, Hohjoh H. Epigenetic aberration of the human REELIN gene in psychiatric disorders. Mol Psychiatry. 2007;12(6):519, 593–600.
Google Scholar
Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A, Costa E. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA. 2005;102(26):9341–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry. 2007;12(4):385–97.
Article
CAS
PubMed
Google Scholar
Brigman JL, Padukiewicz KE, Sutherland ML, Rothblat LA. Executive functions in the heterozygous reeler mouse model of schizophrenia. Behav Neurosci. 2006;120(4):984–8.
Article
PubMed
Google Scholar
Krueger DD, Howell JL, Hebert BF, Olausson P, Taylor JR, Nairn AC. Assessment of cognitive function in the heterozygous reeler mouse. Psychopharmacology. 2006;189(1):95–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ognibene E, Adriani W, Granstrem O, Pieretti S, Laviola G. Impulsivity-anxiety-related behavior and profiles of morphine-induced analgesia in heterozygous reeler mice. Brain Res. 2007;1131(1):173–80.
Article
CAS
PubMed
Google Scholar
Teixeira CM, Martin ED, Sahun I, Masachs N, Pujadas L, Corvelo A, Bosch C, Rossi D, Martinez A, Maldonado R, Dierssen M, Soriano E. Overexpression of Reelin prevents the manifestation of behavioral phenotypes related to schizophrenia and bipolar disorder. Neuropsychopharmacology. 2011;36(12):2395–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brosda J, Dietz F, Koch M. Impairment of cognitive performance after reelin knockdown in the medial prefrontal cortex of pubertal or adult rats. Neurobiol Dis. 2011;44(2):239–47.
Article
PubMed
Google Scholar
Billack B, Serio R, Silva I, Kinsley CH. Epigenetic changes brought about by perinatal stressors: a brief review of the literature. J Pharmacol Toxicol Methods. 2012;66(3):221–31.
Article
CAS
PubMed
Google Scholar
Palacios-Garcia I, Lara-Vasquez A, Montiel JF, Diaz-Veliz GF, Sepulveda H, Utreras E, Montecino M, Gonzalez-Billault C, Aboitiz F. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS One. 2015;10(2):e0117680.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matrisciano F, Tueting P, Dalal I, Kadriu B, Grayson DR, Davis JM, Nicoletti F, Guidotti A. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology. 2013;68:184–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevens HE, Su T, Yanagawa Y, Vaccarino FM. Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex. Psychoneuroendocrinology. 2013;38(4):509–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boersma GJ, Lee RS, Cordner ZA, Ewald ER, Purcell RH, Moghadam AA, Tamashiro KL. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics. 2014;9(3):437–47.
Article
CAS
PubMed
PubMed Central
Google Scholar