Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development. 2008;135(6):995–1003.
Article
CAS
PubMed
Google Scholar
Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature. 2011;479(7372):189–93.
Article
PubMed
Google Scholar
Makarem M, Spike BT, Dravis C, Kannan N, Wahl GM, Eaves CJ. Stem cells and the developing mammary gland. J Mammary Gland Biol Neoplasia. 2013;18(2):209–19.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Baumrucker CR. Retinoids, retinoid analogs, and lactoferrin interact and differentially affect cell viability of 2 bovine mammary cell types in vitro. Domest Anim Endocrinol. 2010;39(1):10–20.
Article
CAS
PubMed
Google Scholar
Stingl J, Eaves CJ, Kuusk U, Emerman JT. Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation. 1998;63(4):201–13.
Article
CAS
PubMed
Google Scholar
Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.
Article
CAS
PubMed
Google Scholar
Zhao K, Liu HY, Zhou MM, Liu JX. Establishment and characterization of a lactating bovine mammary epithelial cell model for the study of milk synthesis. Cell Biol Int. 2010;34(7):717–21.
Article
CAS
PubMed
Google Scholar
Tong HL, Li QZ, Gao XJ, Yin DY. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line. In Vitro Cell Dev Biol Anim. 2012;48(3):149–55.
Article
CAS
PubMed
Google Scholar
Sorg D, Potzel A, Beck M, Meyer HH, Viturro E, Kliem H. Effects of cell culture techniques on gene expression and cholesterol efflux in primary bovine mammary epithelial cells derived from milk and tissue. Vitro Cell Dev Biol Anim. 2012;48(9):550–3.
Article
CAS
Google Scholar
Huynh HT, Robitaille G, Turner JD. Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp Cell Res. 1991;197(2):191–9.
Article
CAS
PubMed
Google Scholar
Huynh H, Pollak M. Hh2a, an Immortalized Bovine Mammary Epithelial-Cell Line, Expresses the Gene Encoding Mammary-Derived Growth Inhibitor (Mdgi). In Vitro Cell Dev Biol Anim. 1995;31(1):25–9.
Article
CAS
PubMed
Google Scholar
Zavizion B, van Duffelen M, Schaeffer W, Politis I. Establishment and characterization of a bovine mammary epithelial cell line with unique properties. In Vitro Cell Dev Biol Anim. 1996;32(3):138–48.
Article
CAS
PubMed
Google Scholar
Ontsouka EC, Albrecht C. Cholesterol transport and regulation in the mammary gland. J Mammary Gland Biol Neoplasia. 2014;19(1):43–58.
Article
PubMed
Google Scholar
Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 2009;119(6):1417–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mendez MG, Kojima S, Goldman RD. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J. 2010;24(6):1838–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zavizion B, Gorewit RC, Politis I. Subcloning the Mac-T bovine mammary epithelial-cell line—morphology, growth-properties, and cytogenetic analysis of clonal cells. J Dairy Sci. 1995;78(3):515–27.
Article
CAS
PubMed
Google Scholar
Barak V, Goike H, Panaretakis KW, Einarsson R. Clinical utility of cytokeratins as tumor markers. Clin Biochem. 2004;37(7):529–40.
Article
CAS
PubMed
Google Scholar
Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 2005;233(3):706–20.
Article
CAS
PubMed
Google Scholar
Pechoux C, Gudjonsson T, Ronnov-Jessen L, Bissell MJ, Petersen OW. Human mammary luminal epithelial cells contain progenitors to myoepithelial cells. Dev Biol. 1999;206(1):88–99.
Article
CAS
PubMed
Google Scholar
Hendrix MJ, Seftor EA, Seftor RE, Trevor KT. Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol. 1997;150(2):483–95.
CAS
PubMed
PubMed Central
Google Scholar
Schweizer J, Bowden PE, Coulombe PA, Langbein L, Lane EB, Magin TM, et al. New consensus nomenclature for mammalian keratins. J Cell Biol. 2006;174(2):169–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basiji DA, Ortyn WE, Liang L, Venkatachalam V, Morrissey P. Cellular image analysis and imaging by flow cytometry. Clin Lab Med. 2007;27(3):653.
Article
PubMed
PubMed Central
Google Scholar
Romagnolo D, Akers RM, Byatt JC, Wong EA, Turner JD. Igf-I-induced Igfbp-3 potentiates the mitogenic actions of Igf-I in mammary epithelial Md-Igf-I cells. Mol Cell Endocrinol. 1994;102(1–2):131–9.
Article
CAS
Google Scholar
Berry SDK, Nielsen MSW, Sejrsen K, Pearson RE, Boyle PL, Akers RM. Use of an immortalized bovine mammary epithelial cell line (MAC-T) to measure the mitogenic activity of extracts from heifer mammary tissue: effects of nutrition and ovariectomy. Domest Anim Endocrinol. 2003;25(3):245–53.
Article
CAS
PubMed
Google Scholar
Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc Natl Acad Sci USA. 1993;90(3):999–1003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabbiani G. The biology of the myofibroblast. Kidney Int. 1992;41(3):530–2.
Article
CAS
PubMed
Google Scholar
Smalley MJ, Titley J, O’Hare MJ. Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In vitro cellular & developmental biology. Animal. 1998;34(9):711–21.
CAS
Google Scholar
Smalley MJ, Titley J, Paterson H, Perusinghe N, Clarke C, O’Hare MJ. Differentiation of separated mouse mammary luminal epithelial and myoepithelial cells cultured on EHS matrix analyzed by indirect immunofluorescence of cytoskeletal antigens. J Histochem Cytochem. 1999;47(12):1513–24.
Article
CAS
PubMed
Google Scholar
Amato PA, Loizzi RF. The identification and localization of actin and actin-like filaments in lactating guinea pig mammary gland alveolar cells. Cell Motil. 1981;1(3):329–47.
Article
CAS
PubMed
Google Scholar
Takenouchi T, Yoshioka M, Yamanaka N, Kitani H. Reversible conversion of epithelial and mesenchymal phenotypes in SV40 large T antigen-immortalized rat liver cell lines. Cell Biol Int Rep. 2010;17(1):e00001.
Article
Google Scholar
Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED. Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res. 2006;66(23):11271–8.
Article
CAS
PubMed
Google Scholar
Taylor-Papadimitriou J, Stampfer M, Bartek J, Lewis A, Boshell M, Lane EB, et al. Keratin expression in human mammary epithelial cells cultured from normal and malignant tissue: relation to in vivo phenotypes and influence of medium. J Cell Sci. 1989;94(Pt 3):403–13.
PubMed
Google Scholar
Rauner G, Barash I. Cell hierarchy and lineage commitment in the bovine mammary gland. PLoS One. 2012;7(1):e30113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zbinden C, Stephan R, Johler S, Borel N, Bunter J, Bruckmaier RM, et al. The inflammatory response of primary bovine mammary epithelial cells to Staphylococcus aureus strains is linked to the bacterial phenotype. PLoS One. 2014;9(1):e87374.
Article
PubMed
PubMed Central
Google Scholar
Ontsouka EC, Huang X, Stieger B, Albrecht C. Characteristics and functional relevance of apolipoprotein-A1 and cholesterol binding in mammary gland tissues and epithelial cells. PLoS One. 2013;8(7):e70407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Baumann M, Nikitina L, Wenger F, Surbek D, Korner M, et al. RNA degradation differentially affects quantitative mRNA measurements of endogenous reference genes in human placenta. Placenta. 2013;34(7):544–7.
Article
CAS
PubMed
Google Scholar
Mani O, Sorensen MT, Sejrsen K, Bruckmaier RM, Albrecht C. Differential expression and localization of lipid transporters in the bovine mammary gland during the pregnancy-lactation cycle. J Dairy Sci. 2009;92(8):3744–56.
Article
CAS
PubMed
Google Scholar
Dumusc SD, Ontsouka EC, Schnyder M, Hartnack S, Albrecht C, Bruckmaier RM, et al. Cyclooxygenase-2 and 5-lipoxygenase in dogs with chronic enteropathies. J Vet Intern Med. 2014;28(6):1684–91.
Article
CAS
PubMed
Google Scholar
Maecker HT, Frey T, Nomura LE, Trotter J. Selecting fluorochrome conjugates for maximum sensitivity. Cytometry Part A. 2004;62A(2):169–73.
Article
Google Scholar