- Research article
- Open access
- Published:
Amniotic fluid exerts a neurotrophic influence on fetal neurodevelopment via the ERK/GSK-3 pathway
Biological Research volume 48, Article number: 44 (2015)
Abstract
Background
The fetus is surrounded by the amniotic fluid (AF) contained by the amniotic sac of the pregnant female. The AF is directly conveyed to the fetus during pregnancy. Although AF has recently been reported as an untapped resource containing various substances, it remains unclear whether the AF could influence fetal neurodevelopment.
Results
We used AF that was extracted from embryos at 16 days in pregnant SD rat and exposed the AF to the neural cells derived from the embryos of same rat. We found that the treatment of AF to cortical neurons increased the phosphorylation in ERK1/2 that is necessary for fetal neurodevelopment, which was inhibited by the treatment of MEK inhibitors. Moreover, we found the subsequent inhibition of glycogen synthase kinase-3 (GSK-3), which is an important determinant of cell fate in neural cells. Indeed, AF increased the neural clustering of cortical neurons, which revealed that the clustered cells were proliferating neural progenitor cells. Accordingly, we confirmed the ability of AF to increase the neural progenitor cells through neurosphere formation. Furthermore, we showed that the ERK/GSK-3 pathway was involved in AF-mediated neurosphere enlargement.
Conclusions
Although the placenta mainly supplies oxygenated blood, nutrient substances for fetal development, these findings further suggest that circulating-AF into the fetus could affect fetal neurodevelopment via MAP kinases-derived GSK-3 pathway during pregnancy. Moreover, we suggest that AF could be utilized as a valuable resource in the field of regenerative medicine.
Background
In placental mammals, the placenta is physically connected with the developing embryos or fetus through the umbilical cord, which supplies oxygenated blood and nutrient substances for fetal development. Moreover, the amniotic fluid (AF), enveloped by the amniotic sac of a pregnant female, is a water-like fluid that is inhaled and exhaled by the fetus [1]. Although AF contains many nutrients and potentially deleterious materials, its effects on fetal neurodevelopment are elusive.
Because the fetus is surrounded by the water-like AF, it was originally considered to function as a shock absorber to protect against external impacts. However, it has been recently reported that AF contains various proteins, carbohydrates, lipids, and urea, all of which circulated into fetus [1–3]. During the growth of the fetus, the volume of the AF increases faster than embryonic size, and is correlated positively with the development of the fetus [1]. The amnion is an active membrane that closely covers the embryo, which metabolically secretes nutritious factors to maintain homeostasis of solutes and water in the AF [4, 5]. In fact, it has been revealed that nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are present in human AF [6]. Moreover, several factors in AF are also believed to be conveyed directly to the fetus, in response to physiological changes in the maternal body during pregnancy [7]. In pregnancy, maternal stress or anxiety increases a stress hormone, cortisol levels in maternal plasma, which are also found correlatively in AF [8]. It has also been reported that maternal obesity increases the level of inflammatory cytokines, such as TNF-α and interleukin-8 in AF [9]. Taken together, these factors could potentially influence the development of embryonic neurons through neurotropic cascade signaling.
In developing neurons, the mitogen-activated protein (MAP) kinases pathway is a multi-functional signaling cascade that regulates neuronal proliferation, differentiation, and apoptosis responding to growth factors, neurotransmitters, neurotrophins, and hormones. These extracellular stimuli typically induce the activation of tyrosine receptor kinase receptors (TRKs) or G-protein-coupled receptors (GRCRs), which subsequently triggers the MAP kinases pathway. The MAP kinases have largely been classified into three major groups: extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 MAP kinase [10]. In particular, ERK is a versatile protein kinase that has been implicated in the proliferation and differentiation of neural progenitor cells. Thus, we examined whether AF stimulates or inhibits the MAP kinases pathway in differentiated neurons and neural progenitor cells, and then investigated the underlying cellular signaling and AF’s effects in this study.
Results
AF activated ERK, time- and dose-dependently, in cortical neurons
To investigate the influence of AF on fetal brain development, we first determined the effect of AF on primary cultured cortical neurons. Because the MAP kinases pathway is essential in the development of neurons [10], we investigated the phosphorylation of ERK, a key kinase in the MAP kinases pathway [11], after the treatment of cortical neurons with AF. As can be seen in Fig. 1a, the application of AF to cortical neurons increased the phosphorylation of ERK1/2 markedly, in a time- and dose-dependent manner. Next, we determined whether this ERK1/2 phosphorylation was mediated by MEK1/2, up-stream of ERK1/2. When MEK1/2 inhibitors (PD98059, U0129) were added with AF, ERK1/2 phosphorylation was inhibited significantly in the cortical neurons (PD98059, 0.54 ± 0.08; UO126, 0.24 ± 0.04, n = 4) (Fig. 1b). Indeed, we could detect the level of growth factor like NGF in AF (data not shown). Thus, these results showed that AF activated the MAP kinases pathway in primary cortical neurons. Furthermore, we questioned the down-stream signal of ERK1/2, activated by AF. Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase, composed of GSK-3α and GSK-3β. Its activity is inhibited by phosphorylation on serine residues of GSK-3α (Ser 21) and GSK-3β (Ser 9), which is an important determinant of cell fate in neural stem or progenitor cells [12]. Indeed, it has been reported that GSK-3 inhibitors, such as lithium (Li+), can regulate the proliferation of neural progenitors and neuronal growth through the ERK pathway [13, 14]. Thus, we next focused on GSK-3 activity as a down-stream signal of the ERK1/2-mediated MAP kinase pathway in response to AF. As can be seen in Fig. 1c, the treatment of cortical neurons with AF showed significantly increased phosphorylation of GSK-3α and GSK-3β; that is, the inhibitory form (Student’s t-test, *<0.05, **<0.01, n = 4). This result indicates that AF inactivated GSK-3α and GSK-3β through the MAP kinase pathway.
AF induced the formation of cell clustering in cortical neurons
The numerous studies support the concept that activity of GSK-3α and GSK-3β is involved in cell fate, including in neuronal proliferation and differentiation [12–14]. So, we next observed phenotypic changes in cultured cortical neurons after application of AF. Interestingly, AF significantly increased the formation of cell clustering when compared to that of control cells (Student’s t-test, ***<0.001, n = 10) (Fig. 2c). Interestingly, since the spherical shape of cluster is reminiscent of neural progenitor or stem cells (Fig. 2a, b) [15], we then checked the properties of these cell clusters.
As expected, it was found that the expression of neural progenitor cell markers, such as Nestin, GFAP, and BLBP was increased by Western blot (Student’s t-test, *<0.05, n = 4) (Fig. 3a) [16–18]. Moreover, immunostaining with Nestin also revealed that the clustered cells are likely to be neural progenitor cells (Fig. 3b, c). To further clarify whether the clustered cell are indeed from the neural lineage, cells were further stained with an immature neuronal marker, Tuj-1 (Neuron-specific class III beta-tubulin). As can be seen in Fig. 4a, intense immune-reactivity against Tuj-1 was evident in migrating cells spreading out from the clustered sphere. As expected, the quantity of neural cells was significantly increased in cortical cells treated with AF (Student’s t-test, *<0.05, n = 4) (Fig. 4b). Taken together, AF improves neural progenitor cell pool, inducing neural clustering formations.
AF increased the formation of neurospheres
To further confirm the formation of neural clustering, we compared the formation of neurospheres, composed of free-floating clusters of neural stem or progenitor cells. When cortical cells isolated from embryonic cortex are plated on uncoated plastic plate in N2-supplemented medium containing bFGF and EGF, the proliferating cells form free-floating clusters with properties of neural stem or progenitor cells [19]. First, flow cytometric analysis was performed to analyze a relative size of neurospheres with or without AF. A higher frequency of enlarged neurospheres was observed in R1 area with increasing concentrations of AF (R1; CTL, 1.33; 10 μL/mL AF, 2.79; 15 μL/mL AF, 3.61; Fig. 5a). To further confirm the size difference, we measured the diameter of the neurospheres. As can be seen in Fig. 5b, we confirmed that AF enlarged the formation of neurospheres compared with the control sphere (Student’s t-test, p < 0.001; Fig. 5c). Thus, AF has the ability to cause the proliferation of neural stem cells.
AF-induced neurosphere enlargement was dependent on the MAP kinases and GSK-3 pathway
We next investigated whether the AF-induced MAP kinases and GSK-3 pathway was involved in neurosphere enlargement. So, we compared the formation of neurospheres after pharmacological perturbation. As can be seen in Fig. 6, treatment with AF caused enlarged neurosphere formation versus the control neurosphere, whereas co-treatment plus PD98059 or U0126 with AF inhibited the formation of neurospheres, indicating that AF-induced neurosphere enlargement was dependent on the MAP kinases pathway. Moreover, we confirmed a possible contribution to GSK-3 on neurosphere formation. According to previous reports, GSK-3 is known to be inhibited by Li+, augmenting the phosphorylation of inhibitory serine residues on GSK-3 [20]. Thus, we treated with the GSK-3 inhibitor, Li+, during the formation of neurospheres. As can be seen in Fig. 6, the application of Li+ in the presence of AF showed a greater increase in the diameter of the neurosphere than the control and AF. Thus, the inhibition of GSK-3 is involved in the formation of neurospheres. Taken together, AF enlarged the neurospheres formed, involving MAP kinases and the GSK-3 pathway.
Discussion
The present study shows that AF exhibits neurotrophic effects on fetal neurodevelopment during pregnancy. The treatment of embryonic cortical neurons with AF induced the MAP kinases pathway markedly, a key signaling pathway in neural development. Subsequently, we found the AF-induced MAP kinases activation has a suppressive effect on GSK-3 activity in cortical neurons. After the application of AF to cultured cortical neurons, we observed an increased neural clustering that resembled neural stem or progenitor cells. Indeed, we further showed that the AF-derived MAP Kinases/GSK-3 pathway was implicated in the proliferation of neural progenitor cells.
Recently, AF has been actively investigated for various functions beyond its role as a shock absorber. Interestingly, amniotic membrane and fluid-derived cells release neurotrophic factors required for neuron survival [4]. In fact, implantation of human amniotic epithelial cells protects against the degeneration of dopaminergic neuron in a rat model of Parkinson’s disease [21]. Moreover, medium conditioned by human amniotic epithelial cells improved the survival of rat retinal ganglion cells [5]. Thus, it seems that AF contains numerous neurotrophic factors secreted by amniotic cells. However, most studies have investigated the protective effects against neuronal degeneration for therapeutic potential. Although AF is circulated into the fetus, its effects on the fetal brain are still unclear. In this study, we showed that AF increased the proliferative properties of fetal neural cells and associated cellular signaling.
Regarding the intracellular signaling underlying the effects of AF, several studies have supported roles for AF in the fetus and adult. In instance, human AF induces the proliferation of fetal and adult skin fibroblasts via ERK and the Akt signaling pathway [22]. Moreover, AF stimulates the Nrf2/Keap1 pathway in forming and repairing epidermal barriers in utero [23]. In this study, we further showed that AF stimulated the MAP kinases pathway, and, in turn, inhibited the activation of GSK-3 in developing neurons. This suppression of GSK-3 ultimately increased the proliferation of neural progenitor cells.
Amniotic fluid is a complex biological material that contains numerous proteins, lipids, even stem cells in the fluid. Using two-dimensional electrophoresis and mass spectrometry, proteome analysis identified 35 proteins in human AF [3]. Moreover, proteomic comparison by gestational age showed large differences in the relative abundances of human AF proteins using two-dimensional electrophoresis [24]. In addition to proteins, cell-free fetal nucleic acids were also detected at much greater concentrations in AF than in maternal plasma [25]. During pregnancy, maternal anxiety caused an increase in stress hormone, corticosteroid levels in AF, as in maternal plasma. Thus, there are many kinds of proteins, lipids, and nucleic acids in AF, which tightly changes in response to various circumstances such as age, stress and diseases states. These materials initiate various intracellular signaling pathways via activation or inhibition of receptors and ion channels, influencing neural development [16, 26]. With numerous biological materials in AF, we should further determine the effective component with regard to neural proliferation in the fetus.
Conclusions
The AF is originally known to function as a shock absorber to protect against external impacts. The current study further suggest that circulating-AF in the fetus could affect neural progenitor cells via MAP kinases-derived GSK-3 pathway to support fetal brain development. Furthermore, stressful maternal behaviors such as drinking, smoking during pregnancy could increase harmful materials in the AF, which might negatively influence on fetal neurodevelopment.
Methods
Amniotic fluid preparation
According to guidelines issued by the Institutional Animal Care and Use Committee at Seoul National University, an embryonic day 16 pregnant Sprague–Dawley (SD) rat was sacrificed in a CO2 chamber. The uterus was removed quickly and placed into a 100 mm sterile Petri-dish containing cold Hank’s balanced salt solution (HBSS) on ice. The uterine walls were incised with maintaining the amnion. The amniotic sac was washed three times with cold HBSS, and then we obtained amniotic fluid (AF) in the tube, tearing the amnion using surgical scissors. After centrifuging the AF (5 rpm, 5 min, 4°C), we collected the supernatant fraction.
Cortical neuron culture
After extracting the AF, we used the embryos to culture cortical neurons. The collected cerebral cortex was transferred into Neurobasal® medium (Gibco), and triturated using a sterile Pasteur pipette. After passing through a 40 μm cell strainer, the cortical cells were cultured on the poly-l-ornithine-coated plates in Neurobasal® medium containing B-27® supplement (Gibco), penicillin/streptomycin (Gibco), and l-glutamine (Gibco) at 37°C in a 95% air/5% CO2 incubator.
Neurosphere formation
To make neurospheres, we first collected the cerebral cortex, as above. The cerebral cortex was placed in DMEM/F12 medium (Gibco), and then triturated using a sterile Pasteur pipette. After passing through a 40 μm cell strainer, the cortical cells were incubated in an un-coated plate in DMEM/F12 medium containing 20 ng FGF, 20 ng FGF, and N2 supplement for 3 or 4 days at 37°C in a 95% air/5% CO2 incubator.
Western blot
Cultured cortical neurons were lysed with RIPA cell lysis buffer (GenDEPOT) containing a protease inhibitor cocktail (Roche). The protein lysates were subjected to a 10% SDS-PAGE gel and transferred to PVDF membrane. The membranes were blocked for 1 h with TBS-T solution (20 mM Tris/HCl, 500 mM NaCl, 0.1% Tween 20) containing 3% skimmed milk powder and then incubated with primary antibodies against ERK (Cell Signaling), GSK-3 antibody sampler kit (Cell Signaling), α-tubulin (Millipore), Nestin (Millipore), GFAP (Sigma), BLBP (Abcam), and Tuj-1 (Abcam) overnight at 4°C on a rotary shaker. Membranes were washed three times in TBS-T solution for 30 min, incubated with secondary antibody for 1 h at RT, and then treated with WEST-ZOL® ECL solution (iNtRON Biotech). Blots were analyzed using an ImageQuant LAS 4000 chemiluminescence system (GE Healthcare).
Immunocytochemistry
Cortical neurons cultured on round coverslips were fixed with 4% paraformaldehyde. Briefly, primary antibodies raised against Nestin, or Tuj-1 were incubated overnight at 4°C on a rotary shaker. The primary antibody-treated cells were washed three times with phosphate buffer solution containing 0.5% Triton X-100, and then bathed for 1 h at RT with Alexa Fluor 488-conjugated anti-mouse IgG (Invitrogen).
Flow cytometry
Cortical neurons generated floating neurospheres for 5 days with or without AF. To measure the comparative size of the neurosphere, cells were run through a flow cytometry analyzer, a FACSCalibur (BD bioscience). The sizes of neurosphere were compared through frequencies of R1-gated cells, representing cell populations with FSC-H values above 600.
Statistics
All results are expressed as means ± SEMs. Student’s t-test was used to determine statistical differences between two means. One-way ANOVA was used to perform multiple comparisons of means followed by the Tukey’s post hoc test. Statistical significance was accepted at p values of *<0.05, **<0.01, and ***<0.001, as indicated. All experiments repeated at least three times independent to raise accuracy.
References
Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25:341–8.
Tsangaris GT, Kolialexi A, Karamessinis PM, Anagnostopoulos AK, Antsaklis A, Fountoulakis M, et al. The normal human amniotic fluid supernatant proteome. In Vivo. 2006;20:479–90.
Park SJ, Yoon WG, Song JS, Jung HS, Kim CJ, Oh SY, et al. Proteome analysis of human amnion and amniotic fluid by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proteomics. 2006;6:349–63.
Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res. 2000;62:585–90.
Uchida S, Suzuki Y, Araie M, Kashiwagi K, Otori Y, Sakuragawa N. Factors secreted by human amniotic epithelial cells promote the survival of rat retinal ganglion cells. Neurosci Lett. 2003;341:1–4.
Marx CE, Vance BJ, Jarskog LF, Chescheir NC, Gilmore JH. Nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 levels in human amniotic fluid. Am J Obstet Gynecol. 1999;181:1225–30.
Sandman CA, Davis EP, Buss C, Glynn LM. Exposure to prenatal psychobiological stress exerts programming influences on the mother and her fetus. Neuroendocrinology. 2012;95:7–21.
Sarkar P, Bergman K, O’Connor TG, Glover V. Maternal antenatal anxiety and amniotic fluid cortisol and testosterone: possible implications for foetal programming. J Neuroendocrinol. 2008;20:489–96.
Bugatto F, Fernandez-Deudero A, Bailen A, Fernandez-Macias R, Hervias-Vivancos B, Bartha JL. Second-trimester amniotic fluid proinflammatory cytokine levels in normal and overweight women. Obstet Gynecol. 2010;115:127–33.
Kyosseva SV. Mitogen-activated protein kinase signaling. Int Rev Neurobiol. 2004;59:201–20.
Grewal SS, York RD, Stork PJ. Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol. 1999;9:544–53.
Cole AR. Glycogen synthase kinase 3 substrates in mood disorders and schizophrenia. FEBS J. 2013;280:5213–27.
Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, et al. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci. 2004;24:6590–9.
Jung GA, Yoon JY, Moon BS, Yang DH, Kim HY, Lee SH, et al. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway. BMC Cell Biol. 2008;9:66.
Clarke L, van der Kooy D. Low oxygen enhances primitive and definitive neural stem cell colony formation by inhibiting distinct cell death pathways. Stem Cells. 2009;27:1879–86.
Jang Y, Lee MH, Lee J, Jung J, Lee SH, Yang DJ, et al. TRPM2 mediates the lysophosphatidic acid-induced neurite retraction in the developing brain. Pflugers Arch. 2014;466(10):1987–98.
Feng L, Hatten ME, Heintz N. Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron. 1994;12:895–908.
Lam CS, Marz M, Strahle U. gfap and nestin reporter lines reveal characteristics of neural progenitors in the adult zebrafish brain. Dev Dyn. 2009;238:475–86.
Jensen JB, Parmar M. Strengths and limitations of the neurosphere culture system. Mol Neurobiol. 2006;34:153–61.
Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3. J Biol Chem. 2003;278:33067–77.
Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson’s disease: a potential source of donor for transplantation therapy. Exp Neurol. 2000;165:27–34.
Chrissouli S, Pratsinis H, Velissariou V, Anastasiou A, Kletsas D. Human amniotic fluid stimulates the proliferation of human fetal and adult skin fibroblasts: the roles of bFGF and PDGF and of the ERK and Akt signaling pathways. Wound Repair Regen. 2010;18:643–54.
Huebner AJ, Dai D, Morasso M, Schmidt EE, Schafer M, Werner S, et al. Amniotic fluid activates the nrf2/keap1 pathway to repair an epidermal barrier defect in utero. Dev Cell. 2012;23:1238–46.
Michaels JE, Dasari S, Pereira L, Reddy AP, Lapidus JA, Lu X, et al. Comprehensive proteomic analysis of the human amniotic fluid proteome: gestational age-dependent changes. J Proteome Res. 2007;6:1277–85.
Hui L, Bianchi DW. Cell-free fetal nucleic acids in amniotic fluid. Hum Reprod Update. 2011;17:362–71.
Jang Y, Jung J, Kim H, Oh J, Jeon JH, Jung S, et al. Axonal neuropathy-associated TRPV4 regulates neurotrophic factor-derived axonal growth. J Biol Chem. 2012;287:6014–24.
Authors’ contributions
YJ performed molecular and cellular experiments. EK conducted a flow cytometry analyzer. KS conducted additional experiments for the revised manuscript. WS and SK coordinated the study and revised the manuscript. All authors read and approved the final manuscript.
Acknowledgements
The authors thank Dr. Uhtaek Oh of the College of Pharmacy, Seoul National University for discussions regarding the experiments.
Compliance with ethical guidelines
Competing interests The authors declare that they have no competing interests.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
About this article
Cite this article
Jang, Y., Kim, EK., Shim, WS. et al. Amniotic fluid exerts a neurotrophic influence on fetal neurodevelopment via the ERK/GSK-3 pathway. Biol Res 48, 44 (2015). https://doi.org/10.1186/s40659-015-0029-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s40659-015-0029-4