Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003;102(3):783–8. doi:10.1182/blood-2003-03-0672.
Article
CAS
PubMed
Google Scholar
Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306(5704):2090–3. doi:10.1126/science.1104742.
Article
CAS
PubMed
Google Scholar
Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011;117(17):4425–33. doi:10.1182/blood-2011-01-258467.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest. 2004;113(9):1271–6. doi:10.1172/JCI20945.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lee P, Peng H, Gelbart T, Beutler E. The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and beta 2-microglobulin-deficient hepatocytes. Proc Natl Acad Sci U S A. 2004;101(25):9263–5. doi:10.1073/pnas.0403108101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lawen A, Lane DJ. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal. 2013;18(18):2473–507. doi:10.1089/ars.2011.4271.
Article
CAS
PubMed
Google Scholar
Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352(10):1011–23. doi:10.1056/NEJMra041809.
Article
CAS
PubMed
Google Scholar
Andrews NC. Anemia of inflammation: the cytokine-hepcidin link. J Clin Invest. 2004;113(9):1251–3. doi:10.1172/JCI21441.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97.
Article
CAS
PubMed
Google Scholar
Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(11):7811–9. doi:10.1074/jbc.M008923200.
Article
CAS
PubMed
Google Scholar
Solomon SD, Uno H, Lewis EF, Eckardt KU, Lin J, Burdmann EA, et al. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N Engl J Med. 2010;363(12):1146–55. doi:10.1056/NEJMoa1005109.
Article
CAS
PubMed
Google Scholar
Rizzo JD, Brouwers M, Hurley P, Seidenfeld J, Arcasoy MO, Spivak JL, et al. American Society of Hematology/American Society of Clinical Oncology clinical practice guideline update on the use of epoetin and darbepoetin in adult patients with cancer. Blood. 2010;116(20):4045–59. doi:10.1182/blood-2010-08-300541.
Article
CAS
PubMed
Google Scholar
Wiebe MS, Nowling TK, Rizzino A. Identification of novel domains within Sox-2 and Sox-11 involved in autoinhibition of DNA binding and partnership specificity. J Biol Chem. 2003;278(20):17901–11. doi:10.1074/jbc.M212211200.
Article
CAS
PubMed
Google Scholar
Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell stem cell. 2013;12(1):15–30. doi:10.1016/j.stem.2012.12.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9(6):625–35. doi:10.1038/ncb1589.
Article
CAS
PubMed
Google Scholar
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.
Article
CAS
PubMed
Google Scholar
Matak P, Chaston TB, Chung B, Srai SK, McKie AT, Sharp PA. Activated macrophages induce hepcidin expression in HuH7 hepatoma cells. Haematologica. 2009;94(6):773–80. doi:10.3324/haematol.2008.003400.
Article
PubMed Central
CAS
PubMed
Google Scholar
Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem. 2001;276(11):7806–10. doi:10.1074/jbc.M008922200.
Article
CAS
PubMed
Google Scholar
De Domenico I, McVey Ward D, Kaplan J. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat Rev Mol Cell Biol. 2008;9(1):72–81. doi:10.1038/nrm2295.
Article
PubMed
Google Scholar
Zhang AS, Enns CA. Molecular mechanisms of normal iron homeostasis. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2009:207-14. doi:10.1182/asheducation-2009.1.207.
Goswami T, Andrews NC. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. J Biol Chem. 2006;281(39):28494–8. doi:10.1074/jbc.C600197200.
Article
CAS
PubMed
Google Scholar
Kawabata H, Fleming RE, Gui D, Moon SY, Saitoh T, O'Kelly J, et al. Expression of hepcidin is down-regulated in TfR2 mutant mice manifesting a phenotype of hereditary hemochromatosis. Blood. 2005;105(1):376–81. doi:10.1182/blood-2004-04-1416.
Article
CAS
PubMed
Google Scholar
Zhang AS, Gao J, Koeberl DD, Enns CA. The role of hepatocyte hemojuvelin in the regulation of bone morphogenic protein-6 and hepcidin expression in vivo. J Biol Chem. 2010;285(22):16416–23. doi:10.1074/jbc.M110.109488.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang AS, Yang F, Wang J, Tsukamoto H, Enns CA. Hemojuvelin-neogenin interaction is required for bone morphogenic protein-4-induced hepcidin expression. J Biol Chem. 2009;284(34):22580–9. doi:10.1074/jbc.M109.027318.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang AS. Control of systemic iron homeostasis by the hemojuvelin-hepcidin axis. Adv Nutr. 2010;1(1):38–45. doi:10.3945/an.110.1009.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang AS, Anderson SA, Meyers KR, Hernandez C, Eisenstein RS, Enns CA. Evidence that inhibition of hemojuvelin shedding in response to iron is mediated through neogenin. J Biol Chem. 2007;282(17):12547–56. doi:10.1074/jbc.M608788200.
Article
CAS
PubMed
Google Scholar
Du X, She E, Gelbart T, Truksa J, Lee P, Xia Y, et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science. 2008;320(5879):1088–92. doi:10.1126/science.1157121.
Article
PubMed Central
CAS
PubMed
Google Scholar
Folgueras AR, de Lara FM, Pendas AM, Garabaya C, Rodriguez F, Astudillo A, et al. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood. 2008;112(6):2539–45. doi:10.1182/blood-2008-04-149773.
Article
CAS
PubMed
Google Scholar
Silvestri L, Pagani A, Nai A, De Domenico I, Kaplan J, Camaschella C. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell metabolism. 2008;8(6):502–11. doi:10.1016/j.cmet.2008.09.012.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mleczko-Sanecka K, Casanovas G, Ragab A, Breitkopf K, Muller A, Boutros M, et al. SMAD7 controls iron metabolism as a potent inhibitor of hepcidin expression. Blood. 2010;115(13):2657–65. doi:10.1182/blood-2009-09-238105.
Article
CAS
PubMed
Google Scholar
Patel N, Masaratana P, Diaz-Castro J, Latunde-Dada GO, Qureshi A, Lockyer P, et al. BMPER protein is a negative regulator of hepcidin and is up-regulated in hypotransferrinemic mice. J Biol Chem. 2012;287(6):4099–106. doi:10.1074/jbc.M111.310789.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ring KL, Tong LM, Balestra ME, Javier R, Andrews-Zwilling Y, Li G, et al. Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell stem cell. 2012;11(1):100–9. doi:10.1016/j.stem.2012.05.018.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lujan E, Chanda S, Ahlenius H, Sudhof TC, Wernig M. Direct conversion of mouse fibroblasts to self-renewing, tripotent neural precursor cells. Proc Natl Acad Sci U S A. 2012;109(7):2527–32. doi:10.1073/pnas.1121003109.
Article
PubMed Central
CAS
PubMed
Google Scholar
Han DW, Tapia N, Hermann A, Hemmer K, Hoing S, Arauzo-Bravo MJ, et al. Direct reprogramming of fibroblasts into neural stem cells by defined factors. Cell stem cell. 2012;10(4):465–72. doi:10.1016/j.stem.2012.02.021.
Article
CAS
PubMed
Google Scholar
Kim J, Efe JA, Zhu S, Talantova M, Yuan X, Wang S, et al. Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A. 2011;108(19):7838–43. doi:10.1073/pnas.1103113108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shi W, Wang H, Pan G, Geng Y, Guo Y, Pei D. Regulation of the pluripotency marker Rex-1 by Nanog and Sox2. J Biol Chem. 2006;281(33):23319–25. doi:10.1074/jbc.M601811200.
Article
CAS
PubMed
Google Scholar
Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280(26):24731–7. doi:10.1074/jbc.M502573200.
Article
CAS
PubMed
Google Scholar
Aota S, Nakajima N, Sakamoto R, Watanabe S, Ibaraki N, Okazaki K. Pax6 autoregulation mediated by direct interaction of Pax6 protein with the head surface ectoderm-specific enhancer of the mouse Pax6 gene. Dev Biol. 2003;257(1):1–13.
Article
CAS
PubMed
Google Scholar
Niwa H, Ogawa K, Shimosato D, Adachi K. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 2009;460(7251):118–22. doi:10.1038/nature08113.
Article
CAS
PubMed
Google Scholar
Doyle SL, Shirey KA, McGettrick AF, Kenny EF, Carpenter S, Caffrey BE, et al. Nuclear factor kappaB2 p52 protein has a role in antiviral immunity through IkappaB kinase epsilon-dependent induction of Sp1 protein and interleukin 15. J Biol Chem. 2013;288(35):25066–75. doi:10.1074/jbc.M113.469122.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nissen RM, Yamamoto KR. The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 2000;14(18):2314–29.
Article
PubMed Central
CAS
PubMed
Google Scholar