Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bra F. Global cancer statistics GLO-BOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2020;2021(71):209–49.
Google Scholar
Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin D, Forman D, Bray F. Cancer incidence and mortality worldwide: IARC cancerbase GLOBOCAN. Int J Cancer. 2012;2015(136):E359–86.
Google Scholar
Kim M-K, Kim K, Han JY, Lim JM, Song YS. Modulation of inflammatory signaling pathways by phytochemicals in ovarian cancer. Genes Nutr. 2011;6(2):109.
Article
CAS
Google Scholar
Machover D, Diaz-Rubio E, De Gramont A, Schif A, Gastiaburu J-J, Brienza S, Itzhaki M, Metzger G, N’daw D, Vignoud J. Two consecutive phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann Oncol. 1996;7(1):95–8.
Article
CAS
Google Scholar
Markman M, Webster K, Zanotti K, Peterson G, Kulp B, Belinson J. Survival following the documentation of platinum and taxane resistance in ovarian cancer: a single institution experience involving multiple phase 2 clinical trials. Gynecol Oncol. 2004;93(3):699–701.
Article
CAS
Google Scholar
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 2007;7(8):573–84.
Article
CAS
Google Scholar
Bekaii-Saab TS, Liu J, Chan KK, Balcerzak SP, Ivy PS, Grever MR, Kraut EH. A phase I and pharmacokinetic study of weekly oxaliplatin followed by paclitaxel in patients with solid tumors. Clin Cancer Res. 2008;14(11):3434–40.
Article
CAS
Google Scholar
He B, Wei W, Liu J, Xu Y, Zhao G. Synergistic anticancer effect of curcumin and chemotherapy regimen FP in human gastric cancer MGC-803 cells. Oncol Lett. 2017;14(3):3387–94.
Article
Google Scholar
Mahjoub MA, Bakhshinejad B, Sadeghizadeh M, Babashah S. Combination treatment with dendrosomal nanocurcumin and doxorubicin improves anticancer effects on breast cancer cells through modulating CXCR4/NF-κB/Smo regulatory network. Mol Biol Rep. 2017;44(4):341–51.
Article
CAS
Google Scholar
Seyed Hosseini E, Alizadeh MZ, Babashah S, Nakhaei RS, Sadeghizadeh M, Haddad HK, Amini JM, Izadpanah F, Atlasi M, Nikzad H. Studies on combination of oxaliplatin and dendrosomal nanocurcumin on proliferation, apoptosis induction, and long non-coding RNA expression in ovarian cancer cells. Cell Biol. 2018;35(3):247–66.
Google Scholar
Amin AR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. J Clin Oncol. 2009;27(16):2712–25.
Article
Google Scholar
Jaggi BK, Chauhan SC, Jaggi M. Review of curcumin effects on signaling pathways in cancer. Proc S Dak Acad Sci. 2007;86:283–93.
CAS
Google Scholar
Shishodia S, Chaturvedi MM, Aggarwal BB. Role of curcumin in cancer therapy. Curr Probl Cancer. 2007;31(4):243–305.
Article
Google Scholar
Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.
Article
CAS
Google Scholar
Garcea G, Jones D, Singh R, Dennison A, Farmer P, Sharma R, Steward W, Gescher A, Berry D. Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. Br J Cancer. 2004;90(5):1011.
Article
CAS
Google Scholar
Kanai M, Imaizumi A, Otsuka Y, Sasaki H, Hashiguchi M, Tsujiko K, Matsumoto S, Ishiguro H, Chiba T. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol. 2012;69(1):65–70.
Article
CAS
Google Scholar
Naksuriya O, Okonogi S, Schiffelers RM, Hennink WE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 2014;35(10):3365–83.
Article
CAS
Google Scholar
Sasaki H, Sunagawa Y, Takahashi K, Imaizumi A, Fukuda H, Hashimoto T, Wada H, Katanasaka Y, Kakeya H, Fujita M. Innovative preparation of curcumin for improved oral bioavailability. Biol Pharm Bull. 2011;34(5):660–5.
Article
CAS
Google Scholar
Mirgani MT, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomed. 2014;9(1):403–17.
Google Scholar
Pei H, Yang Y, Cui L, Yang J, Li X, Yang Y, Duan H. Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci Rep. 2016;6:28773.
Article
CAS
Google Scholar
Givant-Horwitz V, Davidson B, Lazarovici P, Schaefer E, Nesland JM, Tropé CG, Reich R. Mitogen-activated protein kinases (MAPK) as predictors of clinical outcome in serous ovarian carcinoma in effusions. Gynecol Oncol. 2003;91(1):160–72.
Article
CAS
Google Scholar
Davidson B, Risberg B, Kristensen G, Kvalheim G, Emilsen E, Bjåmer A, Berner A. Detection of cancer cells in effusions from patients diagnosed with gynaecological malignancies. Virchows Arch. 1999;435(1):43–9.
Article
CAS
Google Scholar
Hsu C-Y, Bristow R, Cha MS, Wang BG, Ho C-L, Kurman RJ, Wang T-L, Shih I-M. Characterization of active mitogen-activated protein kinase in ovarian serous carcinomas. Clin Cancer Res. 2004;10(19):6432–6.
Article
CAS
Google Scholar
Seidman R, Gitelman I, Sagi O, Horwitz SB, Wolfson M. The role of ERK 1/2 and p38 MAP-kinase pathways in taxol-induced apoptosis in human ovarian carcinoma cells. Exp Cell Res. 2001;268(1):84–92.
Article
CAS
Google Scholar
Feng Y, Likos JJ, Zhu L, Woodward H, Munie G, McDonald JJ, Stevens AM, Howard CP, De Crescenzo GA, Welsch D, et al. Solution structure and backbone dynamics of the catalytic domain of matrix metalloproteinase-2 complexed with a hydroxamic acid inhibitor. Biochim Biophys Acta. 2002;1598(1–2):10–23.
Article
CAS
Google Scholar
Othman H, Wieninger SA, ElAyeb M, Nilges M, Srairi-Abid N. In Silico prediction of the molecular basis of ClTx and AaCTx interaction with matrix metalloproteinase-2 (MMP-2) to inhibit glioma cell invasion. J Biomol Struct Dyn. 2017;35(13):2815–29.
Article
CAS
Google Scholar
Ekici ÖD, Paetzel M, Dalbey RE. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci. 2008;17(12):2023–37.
Article
CAS
Google Scholar
Di Cera E. Serine proteases. IUBMB Life. 2009;61(5):510–5.
Article
Google Scholar
Ahmad A, Sayed A, Ginnebaugh KR, Sharma V, Suri A, Saraph A, Padhye S, Sarkar FH. Molecular docking and inhibition of matrix metalloproteinase-2 by novel difluorinatedbenzylidene curcumin analog. Am J Transl Res. 2015;7(2):298–308.
Google Scholar
Zhang L, Wang P, Yang Z, Du F, Li Z, Wu C, Fang A, Xu X, Zhou G. Molecular dynamics simulation exploration of the interaction between curcumin and myosin combined with the results of spectroscopy techniques. Food Hydrocoll. 2020;101: 105455.
Article
CAS
Google Scholar
Lyu Y, Xiang N, Mondal J, Zhu X, Narsimhan G. Characterization of interactions between curcumin and different types of lipid bilayers by molecular dynamics simulation. J Phys Chem B. 2018;122(8):2341–54.
Article
CAS
Google Scholar
Srinivasan E, Rajasekaran R. Computational investigation of curcumin, a natural polyphenol that inhibits the destabilization and the aggregation of human SOD1 mutant (Ala4Val). RSC Adv. 2016;6(104):102744–53.
Article
CAS
Google Scholar
Jakubowski JM, Orr AA, Le DA, Tamamis P. Interactions between curcumin derivatives and amyloid-β fibrils: insights from molecular dynamics simulations. J Chem Inf Modeling. 2020;60(1):289–305.
Article
CAS
Google Scholar
Park M-J, Kim E-H, Park I-C, Lee H-C, Woo S-H, Lee J-Y, Hong Y-J, Rhee CH, Choi S-H, Shim B-S. Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int J Oncol. 2002;21(2):379–83.
CAS
Google Scholar
Goldberg RM, Gill S. Recent phase III trials of fluorouracil, irinotecan, and oxaliplatin as chemotherapy for metastatic colorectal cancer. Cancer Chemother Pharmacol. 2004;54(1):S57–64.
CAS
Google Scholar
Montopoli M, Ragazzi E, Froldi G, Caparrotta L. Cell-cycle inhibition and apoptosis induced by curcumin and cisplatin or oxaliplatin in human ovarian carcinoma cells. Cell Prolif. 2009;42(2):195–206.
Article
CAS
Google Scholar
Aparna M, Rao L, Kunhikatta V, Radhakrishnan R. The role of MMP-2 and MMP-9 as prognostic markers in the early stages of tongue squamous cell carcinoma. J Oral Pathol Med. 2015;44(5):345–52.
Article
CAS
Google Scholar
Zhou M, Qin S, Chu Y, Wang F, Chen L, Lu Y. Immunolocalization of MMP-2 and MMP-9 in human rheumatoid synovium. Int J Clin Exp Pathol. 2014;7(6):3048.
Google Scholar
Yang W, Li Q, Pan Z. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation. PLoS ONE. 2014;9(9): e106725.
Article
Google Scholar
Matsushita S, Onishi H, Nakano K, Nagamatsu I, Imaizumi A, Hattori M, Oda Y, Tanaka M, Katano M. Hedgehog signaling pathway is a potential therapeutic target for gallbladder cancer. Cancer sci. 2014;105(3):272–80.
Article
CAS
Google Scholar
Liu WH, Chang LS. Caffeine induces matrix metalloproteinase-2 (MMP-2) and MMP-9 down-regulation in human leukemia U937 cells via Ca2+/ROS-mediated suppression of ERK/c-fos pathway and activation of p38 MAPK/c-jun pathway. J Cell Physiol. 2010;224(3):775–85.
Article
CAS
Google Scholar
Kang MH, Oh SC, Lee HJ, Kang HN, Kim JL, Kim JS, Yoo YA. Metastatic function of BMP-2 in gastric cancer cells: the role of PI3K/AKT, MAPK, the NF-κB pathway, and MMP-9 expression. Exp Cell Res. 2011;317(12):1746–62.
Article
CAS
Google Scholar
Menon LG, Kuttan R, Kuttan G. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Cancer Lett. 1995;95(1–2):221–5.
Article
CAS
Google Scholar
Menon LG, Kuttan R, Kuttan G. Anti-metastatic activity of curcumin and catechin. Cancer lett. 1999;141(1–2):159–65.
Article
CAS
Google Scholar
Hong J, Ahn K, Bae E, Jeon S, Choi H. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis. 2006;9(2):147.
Article
CAS
Google Scholar
Aggarwal BB, Shishodia S, Takada Y, Banerjee S, Newman RA, Bueso-Ramos CE, Price JE. Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res. 2005;11(20):7490–8.
Article
CAS
Google Scholar
Sarbolouki MN, Sadeghizadeh M, Yaghoobi MM, Karami A, Lohrasbi T. Dendrosomes: a novel family of vehicles for transfection and therapy. J Chem Technol Biotechnol. 2000;75(10):919–22.
Article
CAS
Google Scholar
Sadeghizadeh M, Ranjbar B, Damaghi M, Khaki L, Sarbolouki MN, Najafi F, Parsaee S, Ziaee AA, Massumi M, Lubitz W. Dendrosomes as novel gene porters-III. J Chem Technol Biotechnol. 2008;83(6):912–20.
Article
CAS
Google Scholar
Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MAH, Najafi F, Hashemi SM. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol. 2012;12(1):226–34.
Article
CAS
Google Scholar
Erfani-Moghadam V, Nomani A, Zamani M, Yazdani Y, Najafi F, Sadeghizadeh M. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells. Int J Nanomed. 2014;9:5541.
Article
CAS
Google Scholar
Babaei E, Sadeghizadeh M, Hassan ZM, Feizi MA, Najafi F, Hashemi SM. Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo. Int Immunopharmacol. 2012;12:226–34.
Article
CAS
Google Scholar
Alizadeh AM, Khaniki M, Azizian S, Mohaghgheghi MA, Sadeghizadeh M, Najafi F. Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier–curcumin. Eur J Pharmacol. 2012;689(1–3):226–32.
Article
CAS
Google Scholar
Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, Long J, Wan Y, Luo F, Zhao X. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. 2011;3(4):1558–67.
Article
CAS
Google Scholar
Liang C-C, Park AY, Guan J-L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329.
Article
CAS
Google Scholar