Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2018;23(4):E762. https://doi.org/10.3390/molecules23040762.
Article
CAS
PubMed
Google Scholar
Arnold PA, Kruuk LE, Nicotra AB. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol. 2019;222(3):1235–41. https://doi.org/10.1111/nph.15656.
Article
PubMed
Google Scholar
Kroymann J. Natural diversity and adaptation in plant secondary metabolism. Current Opin Plant Biol. 2011;14(3):246–51. https://doi.org/10.1016/j.pbi.2011.03.021.
Article
CAS
Google Scholar
Berini JL, Brockman SA, Hegeman AD, Reich PB, Muthukrishnan R, Montgomery RA, Forester JD. Combinations of abiotic factors differentially alter production of plant secondary metabolites in five woody plant species in the boreal-temperate transition zone. Front Plant Sci. 2018;9:1257. https://doi.org/10.3389/fpls.2018.01257.
Article
PubMed
PubMed Central
Google Scholar
Morison JIL, Lawlor DW. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ. 1999;22:659–82. https://doi.org/10.1046/j.1365-3040.1999.00443.x.
Article
CAS
Google Scholar
Ramakrishna A, Ravishankar GA. Influences of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011;6(11):1720–31. https://doi.org/10.4161/psb.6.11.17613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chetri SPK, Sharma K, Agrawal V. Genetic diversity analysis and screening of high psoralen yielding chemotype of Psoralea corylifolia from different regions of India employing HPLC and RAPD marker. Int J Plant Res. 2013;26:88–95. https://doi.org/10.5958/j.2229-4473.26.2s.126.
Article
Google Scholar
Zykin PA, Andreeva EA, Lykholay AN, Tsvetkova NV, Voylokov AV. Anthocyanin composition and content in rye plants with different grain color. Molecules. 2018;23:948. https://doi.org/10.3390/molecules23040948.
Article
CAS
PubMed Central
Google Scholar
Ncube B, van Staden J. Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules. 2015;20(7):12698–731. https://doi.org/10.3390/molecules200712698.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edreva A, Velikova V, Tsonev T, et al. Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol. 2008;34(1–2):67–78.
CAS
Google Scholar
Rejeb IB, Pastor V, Mauch-Mani B. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants. 2014;3(4):458–75. https://doi.org/10.3390/plants3040458.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci. 2015;16(11):26378–94. https://doi.org/10.3390/ijms161125967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narayani M, Srivastava S. Elicitation: a stimulation of stress in in vitro plant cell/tissue cultures for enhancement of secondary metabolite production. Phytochem Rev. 2018;16(6):1227–52. https://doi.org/10.1007/s11101-017-9534-0.
Article
CAS
Google Scholar
De Luca V, Salim V, Atsumi SM, Yu F. Mining the biodiversity of plants: a revolution in the making. Science. 2012;336:1658–61. https://doi.org/10.1126/science.1217410.
Article
CAS
PubMed
Google Scholar
Wurtzel ET, Kutchan TM. Plant metabolism, the diverse chemistry set of the future. Science. 2016;353:1232–6. https://doi.org/10.1126/science.aad2062.
Article
CAS
PubMed
Google Scholar
Raskin I, Ribnicky DM, Komarnytsky S, et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20(12):522–31. https://doi.org/10.1016/S0167-7799(02)02080-2.
Article
CAS
PubMed
Google Scholar
Hall RD, Brouwer ID, Fitzgerald MA. Plant metabolomics and its potential application for human nutrition. Physiol Plant. 2008;132(2):162–75. https://doi.org/10.1111/j.1399-3054.2007.00989.x.
Article
CAS
PubMed
Google Scholar
Clerici MTPS, Carvalho-Silva LB. Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Res Int. 2011;44(7):1658–70. https://doi.org/10.1016/j.foodres.2011.04.020.
Article
CAS
Google Scholar
Cifuentes A. Food analysis: present, future, and foodomics. ISRN Anal Chem. 2012. https://doi.org/10.5402/2012/801607.
Article
Google Scholar
Hartmann T. Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta. 2004;219:1–4. https://doi.org/10.1007/s00425-004-1249-y.
Article
CAS
PubMed
Google Scholar
Freeman BC, Beattie GA. An overview of plant defenses against pathogens and herbivores. Plant Health Instr. 2008. https://doi.org/10.1094/phi-i-2008-0226-01.
Article
Google Scholar
Kim YS, Choi YE, Sano H. Plant vaccination: stimulation of defense system by caffeine production in planta. Plant Signal Behav. 2010;5(5):489–93. https://doi.org/10.4161/psb.11087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao J, Davis LC, Verpoorte R. Elicitor signal transductions leading to the production of plant secondary metabolite. Biotechnol Adv. 2005;23:283–333. https://doi.org/10.1016/j.biotechadv.2005.01.003.
Article
CAS
PubMed
Google Scholar
Hänsch R, Mendel RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol. 2009;12(3):259–66. https://doi.org/10.1016/j.pbi.2009.05.006.
Article
CAS
PubMed
Google Scholar
Poschenrieder C, Gunsé B, Corrales I, Barceló J. A glance into aluminum toxicity and resistance in plants. Sci Total Environ. 2008;400(1–3):356–68. https://doi.org/10.1016/j.scitotenv.2008.06.003.
Article
CAS
PubMed
Google Scholar
Goyal S, Lambert C, Cluzet S, Mérillon JM, Ramawat KG. Secondary metabolites and plant defense. In: Mérillon JM, Ramawat KG, editors. Plant defence: biological control. Netherlands: Springer; 2012. p. 109–38. https://doi.org/10.1007/978-94-007-1933-0_5.
Chapter
Google Scholar
Selmar D, Kleinwächter M. Stress enhances the synthesis of secondary plant products: the impact of stress-related over-reduction on the accumulation of natural products. Plant Cell Physiol. 2013;54(6):817–26. https://doi.org/10.1093/pcp/pct054.
Article
CAS
PubMed
Google Scholar
Edreva A. Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agric Ecosyst Environ. 2005;106:119–33. https://doi.org/10.1016/j.agee.2004.10.022.
Article
CAS
Google Scholar
Edreva AM, Velikova V, Tsonev T. Phenylamides in plants. Russ J Plant Physiol. 2007;54:287–301. https://doi.org/10.1134/S1021443707030016.
Article
CAS
Google Scholar
Bryant JP, Chapin FS III, Klein DR. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 1983;40(3):357–68. https://doi.org/10.2307/3544308.
Article
CAS
Google Scholar
Chinnusamy V, Schumaker K, Zhu JK. Molecular genetics perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot. 2004;55:225–36.
Article
CAS
PubMed
Google Scholar
de Matos Nunes J, Bertodo LOO, Da Rosa LMG, Von Poser GL, Rech SB. Stress induction of valuable secondary metabolites in Hypericum polyanthemum acclimatized plants. South Afr J Bot. 2014;94:182–9. https://doi.org/10.1016/j.sajb.2014.06.014.
Article
CAS
Google Scholar
Szabó K, Radácsi P, Rajhárt P, Ladányi M, Németh É. Stress-induced changes of growth, yield and bioactive compounds in lemon balm cultivars. Plant Physiol Biochem. 2017;119:170–7. https://doi.org/10.1016/j.plaphy.2017.07.019.
Article
CAS
PubMed
Google Scholar
Sharma S, Shrivastava N. Renaissance in phytomedicines: promising implications of NGS technologies. Planta. 2016;244(1):19–38. https://doi.org/10.1007/s00425-016-2492-8.
Article
CAS
PubMed
Google Scholar
Rai M, Rai A, Kawano N, et al. De novo RNA sequencing and expression analysis of Aconitum carmichaelii to analyze key genes involved in the biosynthesis of diterpene alkaloids. Molecules. 2017;22:2155. https://doi.org/10.3390/molecules22122155.
Article
CAS
PubMed Central
Google Scholar
Croteau R, Ketchum RE, Long RM, Kaspera R, Wildung MR. Taxol biosynthesis and molecular genetics. Phytochem Rev. 2006;5(1):75–97. https://doi.org/10.1007/s11101-005-3748-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bjarnholt N, Li B, D’Alvise J, Janfelt C. Mass spectrometry imaging of plant metabolites: principles and possibilities. Nat Prod Rep. 2014;31:818–37. https://doi.org/10.1039/C3NP70100J.
Article
CAS
PubMed
Google Scholar
Isah T, Umar S, Mujib A, et al. Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult. 2018;132(2):239–65. https://doi.org/10.1007/s11240-017-1332-2.
Article
CAS
Google Scholar
Mafu S, Zeribe P. Plant diterpenoid metabolism for manufacturing the biopharmaceuticals of tomorrow: prospects and challenges. Phytochem Rev. 2018;17(1):113–30. https://doi.org/10.1007/s11101-017-9513-5.
Article
CAS
Google Scholar
Scheler U, Brandt W, Porzel A, et al. Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast. Nat Commun. 2016;7:12942. https://doi.org/10.1038/ncomms12942.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ignea C, Athanasakoglou A, Ioannou E, et al. Carnosic acid biosynthesis elucidated by a synthetic biology platform. Proc Natl Acad Sci USA. 2016;113:3681–6. https://doi.org/10.1073/pnas.1523787113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ignea C, Ioannou E, Georgantea P, et al. Production of the forskolin precursor 11b-hydroxy-manoyloxide in yeast using surrogate enzymatic activities. Microb Cell Fact. 2016;15:46. https://doi.org/10.1186/s12934-016-0440-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pateraki I, Andersen-Ranberg J, Jensen NB, et al. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii. Elife. 2017;6:e23001. https://doi.org/10.7554/elife.23001.
Article
PubMed
PubMed Central
Google Scholar
Grace SG, Logan BA. Energy dissipation and radical scavenging by plant phenylpropanoid pathway. Philos Trans R Soc Lond B. 2000;355:1499–510. https://doi.org/10.1098/rstb.2000.0710.
Article
CAS
Google Scholar
Gould KS, McKelvie J, Markham KR. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 2002;25:1261–9. https://doi.org/10.1046/j.1365-3040.2002.00905.x.
Article
CAS
Google Scholar
Niinemets Ü. Uncovering the hidden facets of drought stress: secondary metabolites make the difference. Tree Physiol. 2015;36(2):129–32. https://doi.org/10.1093/treephys/tpv128.
Article
CAS
PubMed
Google Scholar
Luciano ÁJ, Irineo TP, Virginia OVR, et al. Integrating plant nutrients and elicitors for production of secondary metabolites, sustainable crop production and human health: a review. Intl J Agric Biol. 2017;19(3):391–402. https://doi.org/10.17957/IJAB/15.0297.
Article
CAS
Google Scholar
Robbins MP. Functions of plant secondary metabolites and their exploitation in biotechnology. Eur J Plant Pathol. 2000;106(5):488. https://doi.org/10.1023/A:1008748518738.
Article
Google Scholar
Siemens DH, Shannon H, Ragan M. Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecol. 2002;83(2):505–17. https://doi.org/10.2307/2680031.
Article
Google Scholar
Mazid M, Khan TA, Mohammad F. Role of secondary metabolites in defense mechanisms of plants. Biol Med. 2011;3(2):232–49.
CAS
Google Scholar
Koricheva J, Barton K. Temporal changes in plant secondary metabolite production. In: Iason G, Dicke M, Hartley S, editors. The ecology of plant secondary metabolites: from genes to global processes. Cambridge: Cambridge University Press; 2012. p. 34–55. https://doi.org/10.1017/cbo9780511675751.004.
Chapter
Google Scholar
Moore BD, Andrew RL, Külheim C, Foley WJ. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol. 2014;201(3):733–50. https://doi.org/10.1111/nph.12526.
Article
PubMed
Google Scholar
Gobbo-Neto L, Bauermeister A, Sakamoto HT, et al. Spatial and temporal variations in secondary metabolites content of the Brazilian Arnica Leaves (Lychnophora ericoides Mart., Asteraceae). J Braz Chem Soc. 2017;28(12):2382–90. https://doi.org/10.21577/0103-5053.20170092.
Article
CAS
Google Scholar
Isah T. Natural sources of taxol. Br J Pharm Res. 2015;6(4):214–27. https://doi.org/10.9734/BJPR/2015/16293.
Article
CAS
Google Scholar
Isah T. Adjustments to the in vitro culture conditions and associated anomalies in plants. Acta Biol Cracov Ser Bot. 2015;57(2):9–28. https://doi.org/10.1515/abcsb-2015-0026.
Article
Google Scholar
Isah T. Rethinking Ginkgo biloba L.: medicinal uses and conservation. Pharmacogn Rev. 2015;9(18):140. https://doi.org/10.4103/0973-7847.162137.
Article
PubMed
PubMed Central
Google Scholar
Isah T. Production of camptothecin in the elicited callus cultures of Nothapodytes nimmoniana (J. Graham) Mabberly. Chem Papers. 2017;71(6):1091–106. https://doi.org/10.1007/s11696-016-0056-9.
Article
CAS
Google Scholar
Wink M. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet. 1988;75(2):225–33. https://doi.org/10.1007/bf00303957.
Article
CAS
Google Scholar
Jones JDG, Dangl JL. The plant immune system. Nature. 2006;444:323–9. https://doi.org/10.1038/nature0528.
Article
CAS
PubMed
Google Scholar
Dawid C, Hille K. Functional metabolomics—a useful tool to characterize stress-induced metabolome alterations opening new avenues towards tailoring food crop quality. Agronomy. 2018;8(8):138. https://doi.org/10.3390/agronomy8080138.
Article
Google Scholar
Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. J Exp Bot. 2007;58(2):221–7. https://doi.org/10.1093/jxb/erl164.
Article
CAS
PubMed
Google Scholar
Delano-Frier JP, Aviles-Arnaut H, Casarrubias-Castillo K, et al. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress. BMC Genomics. 2011;12:363. https://doi.org/10.1186/1471-2164-12-363.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grativol C, Hemerly AS, Ferreira PC. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta. 2012;1819(2):176–85. https://doi.org/10.1016/j.bbagrm.2011.08.010.
Article
CAS
PubMed
Google Scholar
Fraire-Velázquez S, Balderas-Hernández VE. Abiotic stress in plants and metabolic responses. In: Vahdati K, Leslie C, editors. Abiotic stress-plant responses and applications in agriculture. New York: InTech Open Science; 2013. p. 25–48. https://doi.org/10.5772/54859.
Chapter
Google Scholar
Stratmann J. Ultraviolet-B radiation co-opts defense signaling pathways. Trends Plant Sci. 2003;8:526–33. https://doi.org/10.1016/j.tplants.2003.09.011.
Article
CAS
PubMed
Google Scholar
Wang XQ, Yang PF, Liu Z, et al. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol. 2009;149(4):1739–50. https://doi.org/10.1104/pp.108.131714.
Article
PubMed
PubMed Central
Google Scholar
Peleg Z, Apse MP, Blumwald E. Engineering salinity and water stress tolerance in crop plants: getting closer to the field. Adv Bot Res. 2011;57:405–43. https://doi.org/10.1016/B978-0-12-387692-8.00012-6.
Article
CAS
Google Scholar
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic re-arrangements and regulatory networks. J Exp Bot. 2012;63(4):1593–608. https://doi.org/10.1093/jxb/err460.
Article
CAS
PubMed
Google Scholar
Bennett RN, Wallsgrove RM. Secondary metabolites in plant defense mechanisms. New Phytol. 1994;127(4):617–33. https://doi.org/10.1111/j.1469-8137.1994.tb02968.x.
Article
CAS
PubMed
Google Scholar
Abou Qamar S, Luo H, Laluk K, Mickelbart VM, Mengiste T. Crosstalk between biotic and abiotic stress responses in tomato is mediated by an AIM1 transcription factor. Plant J. 2009;58:1–13.
Article
Google Scholar
Andreasson E, Ellis B. Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci. 2010;15:106–13.
Article
CAS
PubMed
Google Scholar
Harborne JB. Role of secondary metabolites in chemical defense mechanisms in plants. Ciba Found Symp. 1990;154:126–34.
CAS
PubMed
Google Scholar
Acamovic T, Brooker JD. Biochemistry of plant secondary metabolites and their effects in animals. Proc Nutri Soc. 2005;64(3):403–12. https://doi.org/10.1079/PNS2005449.
Article
CAS
Google Scholar
Wiermann R. Secondary plant products and tissue differentiation. In: Conn EE, editor. The biochemistry of plants, vol. 7. New York: Academic Press; 1981. p. 85–116.
Google Scholar
Lange BM, Croteau R. Genetic engineering of essential oil production in mint. Curr Opin Plant Biol. 1999;2(2):139–44. https://doi.org/10.1016/s1369-5266(99)80028-4.
Article
CAS
PubMed
Google Scholar
Metlen KL, Aschehoug ET, Callaway RM. Plant behavioral ecology: dynamic plasticity in secondary metabolites. Plant Cell Environ. 2009;32(6):641–53. https://doi.org/10.1111/j.1365-3040.2008.01910.x.
Article
CAS
PubMed
Google Scholar
Kooke R, Keurentjes JJB. Multi-dimensional regulation of metabolic networks shaping plant development and performance. J Exp Bot. 2011;63(9):3353–65. https://doi.org/10.1093/jxb/err373.
Article
CAS
PubMed
Google Scholar
Grace O. The ecology of plant secondary metabolites: from genes to global processes. In: Iason GR, Dicke M, Hartley SE, editors. The Canadian field-naturalist, vol. 126. Cambridge: Cambridge University; 2012. p. 178. https://doi.org/10.1111/boj.12013.
Chapter
Google Scholar
Iason GR, O’Reilly-Wapstra JM, Brewer MJ, Summers RW, Moore BD. Do multiple herbivores maintain chemical diversity of Scots pine monoterpenes? Philos Trans R Soc B: Biol Sci. 2012;366(1569):1337–45. https://doi.org/10.1098/rstb.2010.0236.
Article
Google Scholar
Shoji T, Yamada Y, Hashimoto T. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol. 2000;41(7):831–9. https://doi.org/10.1093/pcp/pcd001.
Article
CAS
PubMed
Google Scholar
Yazaki K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 2006;580(4):1183–91. https://doi.org/10.1016/j.febslet.2005.12.009.
Article
CAS
PubMed
Google Scholar
Sato H, Tanaka S, Tabata M. Kinetics of alkaloid uptake by cultured cells of Coptis japonica. Phytochem. 1993;34:697–701.
Article
CAS
Google Scholar
Breitling R, Ceniceros A, Jankevics A, Takano E. Metabolomics for secondary metabolite research. Metabolites. 2013;3(4):1076–83. https://doi.org/10.3390/metabo3041076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Gabbiesh A, Kleinwächter M, Selmar D. Influencing the contents of secondary metabolites in spice and medicinal plants by deliberately applying drought stress during their cultivation. Jordan J Biol Sci. 2015;147(3379):1–10.
Google Scholar
Guerriero G, Berni R, Muñoz-Sanchez J, et al. Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes. 2018;9(6):309. https://doi.org/10.3390/genes9060309.
Article
CAS
PubMed Central
Google Scholar
Almagro L, Fernández-Pérez F, Pedreño M. Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules. 2015;20(2):2973–3000. https://doi.org/10.3390/molecules20022973.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wink M. Physiology of the accumulation of secondary metabolites with special reference to alkaloids. Cell culture and somatic cell genetics of plants, vol. 4. Cambridge: Academic press Inc.; 1987. p. 17–42.
Google Scholar
Ralphs MH, Gardner, Pfister JA. Toxophenology and grazing risk models of tall larkspur. In: Acamovic T, Stewart CS, Pennycott TW, editors. Poisonous plants and related toxins. Wallingford, Oxon: CAB International; 2004. p. 575–81.
Chapter
Google Scholar
Heath MC. Hypersensitive response-related death. Plant Mol Biol. 2000;44:321–34. https://doi.org/10.1023/A:1026592509060.
Article
CAS
PubMed
Google Scholar
Beckman GH. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defense responses in plants? Physiol Mol Plant Pathol. 2000;57:101–10. https://doi.org/10.1006/pmpp.2000.0287.
Article
CAS
Google Scholar
Ramakrishna A, Giridhar P, Ravishankar GA. Phytoserotonin: a review. Plant Signal Behav. 2011;6:800–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murch SJ, Alan AR, Cao J, Saxena PK. Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res. 2009;47:277–83. https://doi.org/10.1111/j.1600-079X.2009.00711.
Article
CAS
PubMed
Google Scholar
Gill SS, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signal Behav. 2010;5:26–33. https://doi.org/10.4161/psb.5.1.10291.
Article
CAS
PubMed
PubMed Central
Google Scholar
Demmig-Adams B. Linking xanthophyll cycle with thermal energy dissipation. Photosynth Res. 2003;76:73–80. https://doi.org/10.1023/A:1024902927403.
Article
CAS
PubMed
Google Scholar
van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science. 2000;289:295–7. https://doi.org/10.1126/science.289.5477.295.
Article
PubMed
Google Scholar
Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol. 2010;11(5):705–19. https://doi.org/10.1111/j.1364-3703.2010.00625.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell. 1995;7(7):1085. https://doi.org/10.1105/tpc.7.7.1085.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogerio AP, Sá-Nunes A, Faccioli LH. The activity of medicinal plants and secondary metabolites on eosinophilic inflammation. Pharmacol Res. 2010;62(4):298–307. https://doi.org/10.1016/j.phrs.2010.04.005.
Article
CAS
PubMed
Google Scholar
Shiringani RP, Shimelis HA. Yield response and stability among cowpea genotypes at three planting dates and test environments. Afr J Agric Res. 2011;6(14):3259–63.
Google Scholar
Wink M. Modes of action of herbal medicines and plant secondary metabolites. Medicines. 2015;2(3):251–86. https://doi.org/10.3390/medicines2030251.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh S, Watson A, Gonzalez-Navarro OE, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc. 2018;13(12):2944–63. https://doi.org/10.1038/s41596-018-0072-z.
Article
CAS
PubMed
Google Scholar
El-Hendawy S, Al-Suhaibani N, Elsayed S, et al. Combining biophysical parameters, spectral indices and multivariate hyperspectral models for estimating yield and water productivity of spring wheat across different agronomic practices. PLoS ONE. 2019;14(3):e0212294.
Article
PubMed
PubMed Central
CAS
Google Scholar
El-Hendawy SE, Al-Suhaibani NA, Hassan WM, et al. Evaluation of wave lengths and spectral reflectance indices for high-throughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agric Water Manag. 2019;212:358–77. https://doi.org/10.1016/j.agwat.2018.09.009.
Article
Google Scholar
Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B. Induction of somatic embryogenesis as an example of stress-related plant reactions. Electroni J Biotechnol. 2010;13(1):12–3. https://doi.org/10.2225/vol13-issue1-fulltext-4.
Article
CAS
Google Scholar
Angelova Z, Georgiev S, Roos W. Elicitation of plants. Biotechnol Biotechnol Equip. 2006;20(2):72–83. https://doi.org/10.1080/13102818.2006.10817345.
Article
CAS
Google Scholar
Chinnusamy V, Zhu J, Zhu JK. Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng. 2006;27:141–77. https://doi.org/10.1007/0-387-25856-6_9.
Article
CAS
Google Scholar
Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63(10):3523–43. https://doi.org/10.1093/jxb/ers100.
Article
CAS
PubMed
Google Scholar
Yildiz-Aktas L, Dagnon S, Gurel A, Gesheva E, Edreva A. Drought tolerance in cotton: involvement of non-enzymatic ROS-scavenging compounds. J Agron Crop Sci. 2009;195(4):247–53. https://doi.org/10.1111/j.1439-037X.2009.00366.x.
Article
CAS
Google Scholar
Loreto F, Velikova V. Isoprene produced by leaves protects photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001;127:1781–7. https://doi.org/10.1104/pp.010497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velikova V, Edreva A, Loreto F. Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plant. 2004;122:219–25. https://doi.org/10.1111/j.0031-9317.2004.00392.x.
Article
CAS
Google Scholar
Velikova V, Pinelli P, Loreto F. Consequences of inhibition of isoprene synthesis in Phragmites australis leaves exposed to elevated temperatures. Agric Ecosyst Environ. 2005;106:209–17. https://doi.org/10.1016/j.agee.2004.10.009.
Article
CAS
Google Scholar
Velikova V, Edreva A, Tsonev T, Jones HG. Singlet oxygen quenching by phenylamides and their parent compounds. Z Naturforsch. 2007;62:833–8. https://doi.org/10.1515/znc-2007-11-1211.
Article
CAS
Google Scholar
Edreva A, Yordanov I, Kardjieva R, Hadjiiska E, Gesheva E. Expression of phenylamides in abiotic stress conditions. Bulg J Plant Physiol. 1995;21:15–23.
CAS
Google Scholar
Edreva A, Yordanov I, Kardjieva R, Gesheva E. Heat shock responses of bean plants: involvement of free radicals, antioxidants and free radical/active oxygen scavenging systems. Biol Plant. 1998;41:185–91. https://doi.org/10.1023/A:1001846009471.
Article
CAS
Google Scholar
Hadacek F. Secondary metabolites as plant traits: current assessment and future perspectives. Crit Rev Plant Sci. 2002;21:273–322. https://doi.org/10.1080/0735-260291044269.
Article
CAS
Google Scholar
Seigler DS. Plant secondary metabolism. Boston: Kluwer Academic Publishers; 1998. p. 193–7.
Book
Google Scholar
Fritz C, Palacios-Rojas N, Feil R, Stitt M. Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 2006;46(4):533–48. https://doi.org/10.1111/j.1365-313X.2006.02715.x.
Article
CAS
PubMed
Google Scholar
Wang Q, Eneji AE, Kong X, Wang K, Dong H. Salt stress effects on secondary metabolites of cotton in relation to the gene expression responsible for aphid development. PLoS ONE. 2015;10(6):e0129541. https://doi.org/10.1371/journal.pone.0129541.
Article
CAS
PubMed
PubMed Central
Google Scholar
Becerra-Moreno A, Redondo-Gil M, Benavides J, et al. Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Front Plant Sci. 2015;6:837. https://doi.org/10.3389/fpls.2015.00837.
Article
PubMed
PubMed Central
Google Scholar
Gouvea DR, Gobbo-Neto L, Sakamoto HT, et al. Seasonal variation in the major secondary metabolites present in extract of Eremanthus mattogrossensis Less (Asteraceae: Vernonieae) leaves. Quim Nova. 2012;35(11):2139–45. https://doi.org/10.1590/S0100-40422012001100007.
Article
CAS
Google Scholar
Shamloo M, Babawale EA, Furtado A, et al. Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. Sci Rep. 2017;7(1):9133. https://doi.org/10.1038/s41598-017-09681-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mittler R, Vanderauwera S, Gollery M, van Breusegem F. Reactive oxygen network of plants. Trends Plant Sci. 2004;9:490–8. https://doi.org/10.1016/j.tplants.2004.08.009.
Article
CAS
PubMed
Google Scholar
Pedley KF, Martin GB. Role of mitogen-activated protein kinases in plant immunity. Curr Opin Plant Biol. 2005;8:541–7. https://doi.org/10.1016/j.pbi.2005.07.006.
Article
CAS
PubMed
Google Scholar
Savvas D, Gruda N. Application of soilless culture technologies in the modern greenhouse industry—a review. Euro J Hortic Sci. 2018;83(5):280–93. https://doi.org/10.17660/eJHS.2018/83.5.2.
Article
Google Scholar
Feng JC, Zhang YJ, Yang T-Z. Effect of low-temperature stress on membrane lipid peroxidation and concentration of free-proline in Camptotheca acuminata seedling. For Res. 2002;15(2):197–202.
Google Scholar
Feng JC, Zhang YJ, Zhang QJ, Li S-L, Hu Z. The effects of drought stress and anti-transpiration agent treatment on some physiological indexes of Camptotheca acuminata and its camptothecin content. J Henan Agric Univ. 2002;36(2):137–42.
Google Scholar
Li ZH, Liu ZJ. Effects of benzyladenine and naphthalene acetic acid on growth and camptothecin accumulation in Camptotheca acuminata seedlings. J Plant Growth Regul. 2003;22:205–16. https://doi.org/10.1007/s00344-003-0015-x.
Article
CAS
Google Scholar
Sun SQ, Yan SF. Effects of nitrogen forms on camptothecin content and its metabolism-related enzymes activities in Camptotheca acuminata seedlings. China J Chin Mater Med. 2008;33(3):1519–23.
CAS
Google Scholar
Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH. Secondary metabolite signaling in host–parasitic plant interactions. Curr Opin Plant Biol. 2003;6(4):358–64. https://doi.org/10.1016/S1369-5266(03)00065-7.
Article
CAS
PubMed
Google Scholar
Winkel-Shirley B. Flavonoid biosynthesis, a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;26:485–93. https://doi.org/10.1104/pp.126.2.485.
Article
Google Scholar
Sampaio BL, Edrada-Ebel R, Da Costa FB. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: a model for environmental metabolomics of plants. Sci Rep. 2016;6:29265. https://doi.org/10.1038/srep29265.
Article
PubMed
PubMed Central
Google Scholar
Gupta B, Huang B. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Intl J Genomics. 2014. https://doi.org/10.1155/2014/701596.
Article
Google Scholar
Hassan A. Effects of mineral nutrients on physiological and biochemical processes related to secondary metabolites production in medicinal herbs. Med Arom Plant Sci Biotechnol. 2012;6(1):105–10.
Google Scholar
Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD. Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA. 2008;105:803–8. https://doi.org/10.1073/pnas.0709559105.
Article
PubMed
PubMed Central
Google Scholar
Lillo C, Lea US, Ruoff P. Nutrient depletion as key factor for manipulating gene expression and product formation in the different branches of flavonoid pathway. Plant Cell Environ. 2008;31:587–601. https://doi.org/10.1111/j.1365-3040.2007.01748.x.
Article
CAS
PubMed
Google Scholar
Giorgi A, Mingozzi A, Madeo M, Speranza G, Cocucci M. Effect of nitrogen starvation on the phenolic metabolism and antioxidant properties of yarrow (Achillea collina Becker ex Rchb.). Food Chem. 2009;114:204–11. https://doi.org/10.1016/j.foodchem.2008.09.039.
Article
CAS
Google Scholar
Wu P, Ma L, Hou X, et al. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol. 2003;132:1260–71. https://doi.org/10.1104/pp.103.021022.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cakmak I, Yazici AM. Magnesium: a forgotten element in crop production. Better Crops. 2010;94:23–5.
Google Scholar
Matula J, Zukalova H. Sulphur concentrations and distribution in three varieties of oilseed rape in relation to sulfur fertilization at vegetative stages. Rostl Vyroba. 2001;47:1–6.
CAS
Google Scholar
Cona A, Rea G, Angelini R, Federico R, Tavladoraki P. Functions of amine oxidases in plant development and defense. Trends Plant Sci. 2006;11:80–8. https://doi.org/10.1016/j.tplants.2005.12.009.
Article
CAS
PubMed
Google Scholar
Hayden AL. Aeroponic and hydroponic systems for medicinal herb, rhizome, and root crops. HortScience. 2006;41(3):536–8.
Article
CAS
Google Scholar
von Bieberstein P, Xu YM, Gunatilaka AL, Gruener R. Biomass production and withaferin a synthesis by Withania somnifera grown in aeroponics and hydroponics. HortScience. 2014;49(12):1506–9.
Article
Google Scholar
Savio LEB, Astarita LV, Santarém ER. Secondary metabolism in micropropagated Hypericum perforatum L. grown in a non-aerated liquid medium. Plant Cell Tissue Organ Cult. 2012;108(3):465–72. https://doi.org/10.1007/s11240-011-0058-9.
Article
CAS
Google Scholar
Chishaki N, Horiguchi T. Responses of secondary metabolism in plants to nutrient deficiency. Soil Sci Plant Nutr. 1997;43(1):987–91. https://doi.org/10.1080/00380768.1997.11863704.
Article
CAS
Google Scholar
Chalker-Scott L, Fnchigami LH. The role of phenolic compounds in plant stress responses. In: Paul HL, editor. Low-temperature stress physiology in crops. Boca Raton: CRC Press Inc.; 1989. p. 67–79.
Google Scholar
Liakopoulos G, Karabourniotis G. Boron deficiency and concentrations and composition of phenolic compounds in Olea europaea leaves: a combined growth chamber and field study. Tree Physiol. 2005;25(3):307–15. https://doi.org/10.1093/treephys/25.3.307.
Article
CAS
PubMed
Google Scholar
Tuleja N, Mahajan S. Calcium signaling network in plants: an overview. Plant Signal Behav. 2007;2(2):79–85.
Article
Google Scholar
Arruda SCC, Souza GM, Almeida M, Gonçalves AN. Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus morphogenesis in vitro. Plant Cell Tissue Organ Cult. 2000;63(2):142–54. https://doi.org/10.1023/A:1006482702094.
Article
Google Scholar
Giridhar ARP, Ravishankar GA. Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L. Plant Signal Behav. 2009;4(12):1136–41. https://doi.org/10.4161/psb.4.12.10101.
Article
PubMed
PubMed Central
Google Scholar
Sujanya S, Devi BP, Sai I. In vitro production of azadirachtin from cell suspension cultures of Azadirachta indica. J Biosci. 2008;33(1):113–20.
Article
CAS
PubMed
Google Scholar
Rajasekaran T, Ravishankar GA, Venkataraman LV. Influence of nutrient stress on pyrethrin production by the cultured cells of pyrethrum (Chrysanthemum cinerariaefolium). Curr Sci. 1991;60:705–7.
CAS
Google Scholar
Lee Y, Lee DE, Lee HS, et al. Influence of auxins, cytokinins, and nitrogen on production of rutin from callus and adventitious roots of the white mulberry tree (Morus alba L.). Plant Cell Tissue Organ Cult. 2011;105:9–19. https://doi.org/10.1007/s11240-010-9832-3.
Article
CAS
Google Scholar
Misra N, Gupta AK. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol. 2006;163(1):11–8. https://doi.org/10.1016/j.jplph.2005.02.011.
Article
CAS
PubMed
Google Scholar
Xu Z, Zhou G, Shimizu H. Plant responses to drought and re-watering. Plant Signal Behav. 2010;5:649–54. https://doi.org/10.4161/psb.5.6.11398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan ZQ, Wang BX, Gao BQ, et al. Film mulch with irrigation and rainfed cultivations improves maize production via efficient water use in Melkassa, Ethiopia 2018.
Mashilo J, Odindo AO, Shimelis HA, Musenge P, Tesfay SZ, Magwaza LS. Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency. Plant Physiol Biochem. 2017;120:75–87. https://doi.org/10.1016/j.plaphy.2017.09.022.
Article
CAS
PubMed
Google Scholar
Quan NT, Anh LH, Khang DT, et al. Involvement of secondary metabolites in response to drought stress of rice (Oryza sativa L.). Agriculture. 2016;6(2):23. https://doi.org/10.3390/agriculture6020023.
Article
CAS
Google Scholar
Afzal SF, Yar AK, Ullah RH, et al. Impact of drought stress on active secondary metabolite production in Cichorium intybus roots. J Appl Environ Biol Sci. 2017;7(7):39–43.
Google Scholar
Piasecka A, Sawikowska A, Kuczyńska A, et al. Drought-related secondary metabolites of barley (Hordeum vulgare L.) leaves and their metabolomic quantitative trait loci. Plant J. 2017;89(5):898–913. https://doi.org/10.1111/tpj.13430.
Article
CAS
PubMed
Google Scholar
Nogués S, Allen DJ, Morison JIL, Baker NR. Ultraviolet-B radiation effects on water relations, leaf development and photosynthesis in droughted pea plants. Plant Physiol. 1998;117:173–81. https://doi.org/10.1016/j.indcrop.2008.02.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Abreu IN, Mazzafera P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem. 2005;43(3):241–8. https://doi.org/10.1016/j.plaphy.2005.01.020.
Article
CAS
Google Scholar
Nowak M, Manderscheid R, Weigel H-J, Kleinwächter M, Selmar D. Drought stress increases the accumulation of monoterpenes in sage (Salvia officinalis), an effect that is compensated by elevated carbon dioxide concentration. J Appl Bot Food Qual. 2010;83:133–6.
CAS
Google Scholar
Nakabayashi R, Mori T, Saito K. Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav. 2014;9(8):e29518. https://doi.org/10.4161/psb.29518.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma P, Dubey RS. Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: role of osmolytes as enzyme protectant. J Plant Physiol. 2005;162(8):854–64. https://doi.org/10.1016/j.jplph.2004.09.011.
Article
CAS
PubMed
Google Scholar
González-Santana IH, Márquez-Guzmán J, Cram-Heydrich S, Cruz-Ortega R. Conostegia xalapensis (Melastomataceae): an aluminum accumulator plant. Physiol Plant. 2012;144(2):134–45. https://doi.org/10.1111/j.1399-3054.2011.01527.x.
Article
CAS
PubMed
Google Scholar
Abate E, Hussien S, Laing M, Mengistu F. Aluminium toxicity tolerance in cereals: mechanisms, genetic control and breeding methods. Afr J Agric Res. 2013;8(9):711–22.
Google Scholar
Yang ZB, Rao IM, Horst WJ. Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil. 2013;372(1–2):3–25. https://doi.org/10.1007/s11104-012-1580-1.
Article
CAS
Google Scholar
Al Hassan M, Chaura J, Donat-Torres MP, Boscaiu M, Vicente O. Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB Plants. 2017;9(2):plx009. https://doi.org/10.1093/aobpla/plx009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci. 2017;8:1767. https://doi.org/10.3389/fpls.2017.01767.
Article
PubMed
PubMed Central
Google Scholar
Mizukami H, Konoshima M, Tabata M. Effect of nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochem. 1977;16:1183–6. https://doi.org/10.1016/S0031-9422(00)94356-5.
Article
CAS
Google Scholar
Ohlsson AB, Berglund T. Effect of high MnSO4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness. J Plant Physiol. 1989;135:505–7. https://doi.org/10.1016/S0176-1617(89)80112-9.
Article
CAS
Google Scholar
Cetin ES, Babalik Z, Hallac-Turk F, Gokturk-Baydar N. The effects of cadmium chloride on secondary metabolite production in Vitis vinifera cv. cell suspension cultures. Biol Res. 2014;47(1):47. https://doi.org/10.1186/0717-6287-47-47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yazaki K. Lithospermum erythrorhizon cell cultures: present and future aspects. Plant Biotechnol. 2017;34(3):131–42. https://doi.org/10.5511/plantbiotechnology.17.0823a.
Article
CAS
Google Scholar
Larson RA. The antioxidants of higher plants. Phytochem. 1988;27:969–78. https://doi.org/10.1016/0031-9422(88)80254-1.
Article
CAS
Google Scholar
Soliz-Guerrero JB, de Rodriguez DJ, Rodriguez-Garcia R, Angulo-Sanchez JL, Mendez-Padilla G. Quinoa saponins: concentration and composition analysis. In: Janick J, Whipkey A, editors. Trends in new crops and new uses. Alexandria: ASHS Press; 2002. p. 110.
Google Scholar
Seitz U, Reuff I, Reinhard E. Cryopreservation of plant cell cultures. In: Neumann KH, Barz W, Reinhard E, editors. Primary and secondary metabolism of plant cell cultures. Berlin: Springer; 1985. p. 323–33.
Chapter
Google Scholar
Cho JS, Chun SH, Lee SJ, Kim IH, Kim DI. Development of cell line preservation method for research and industry producing useful metabolites by plant cell culture. Biotechnol Bioprocess Eng. 2000;5(5):372–8.
Article
CAS
Google Scholar
van der Molen KM, Raja HA, El-Elimat T, Oberlies NH. Evaluation of culture media for the production of secondary metabolites in natural products screening program. AMB Express. 2013;3(1):71. https://doi.org/10.1186/2191-0855-3-71.
Article
CAS
Google Scholar
Thengane SR, Kulkarni DK, Shrikhande VA, Joshi SP, Sonawane KB, Krishnamurthy KV. Influence of medium composition on callus induction and camptothecin(s) accumulation in Nothapodytes foetida. Plant Cell Tissue Organ Cult. 2003;72(3):247–51. https://doi.org/10.1023/A:1022392929406.
Article
CAS
Google Scholar
Karwasara VS, Dixit VK. Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley. Plant Biotechnol Rep. 2013;7(3):357–69. https://doi.org/10.1007/s11816-012-0270-z.
Article
Google Scholar
Deepthi S, Satheeshkumar K. Effects of major nutrients, growth regulators and inoculum size on enhanced growth and camptothecin production in adventitious root cultures of Ophiorrhiza mungos L. Biochem Eng J. 2017;117:198–209. https://doi.org/10.1016/j.bej.2016.10.016.
Article
CAS
Google Scholar
Cingöz G, Karakaş FP. The effects of nutrient and macronutrient stress on certain secondary metabolite accumulations and redox regulation in callus cultures of Bellis perennis L. Turkish J Biol. 2016;40(6):1328–35. https://doi.org/10.3906/biy-1603-73.
Article
CAS
Google Scholar
Lambardi M, Benelli C, De Carlo A. Cryopreservation as a tool for the long-term conservation of woody plant germplasm: development of the technology at the CNR/IVALSA institute of Florence. The Role of Biotechnology. 2005; Villa Gualino, Turin Italy. p. 5–7.
Bruňáková K, Čellárová E. Conservation strategies in the genus Hypericum via cryogenic treatment. Front Plant Sci. 2016;7:558. https://doi.org/10.3389/fpls.2016.00558.
Article
PubMed
PubMed Central
Google Scholar
Janska A, Marsik P, Zelenkova S, Ovesna J. Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol. 2010;12:395–405. https://doi.org/10.1111/j.1438-8677.2009.00299.x.
Article
CAS
PubMed
Google Scholar
Georgieva E, Petrova D, Yordanova Z, Kapchina-Toteva V, Cellarova E, Chaneva G. Influence of cryopreservation on antioxidative activity of in vitro cultivated Hypericum species. Biotechnol Biotechnol Equip. 2014;28(5):863–70. https://doi.org/10.1080/13102818.2014.946805.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao Y, Qi L, Wei-Ming Wang W, Saxena PK, Chun-Zhao Liu C. Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata. J Pineal Res. 2011;50:83–8. https://doi.org/10.1111/j.1600-079X.2010.00817.x.
Article
CAS
PubMed
Google Scholar
Kim SI, Choi HK, Son JS, et al. Cryopreservation of Taxus chinensis suspension cell cultures. Cryo Lett. 2001;22(1):43–50.
Google Scholar
Urbanova M, Kosuth J, Cellarova E. Genetic and biochemical analysis of Hypericum perforatum L. plants regenerated after cryopreservation. Plant Cell Rep. 2006;25:140–7. https://doi.org/10.1007/s00299-005-0050-0.
Article
CAS
PubMed
Google Scholar
Skyba M, Urbanova M, Kapchina-Toteva V, et al. Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. Cryo Lett. 2010;31:249–60.
CAS
Google Scholar
Dixit-Sharma S, Ahuja-Ghosh S, Mandal BB, Srivastava PS. Metabolic stability of plants regenerated from cryopreserved shoot tips of Dioscorea deltoidea—an endangered medicinal plant. Scientia Hortic. 2005;105(4):513–7. https://doi.org/10.1016/j.scienta.2005.02.011.
Article
CAS
Google Scholar
Li LQ, Li XL, Fu CH, Zhao CF, Yu LJ. Sustainable use of Taxus media cell cultures through minimal growth conservation and manipulation of genome methylation. Process Biochem. 2013;48(3):525–31. https://doi.org/10.1016/j.procbio.2013.01.013.
Article
CAS
Google Scholar
Elleuch H, Gazeau C, David H, David A. Cryopreservation does not affect the expression of a foreign sam gene in transgenic Papaver somniferum cells. Plant Cell Rep. 1998;18:94–8.
Article
CAS
Google Scholar
Thomsen MG, Galambosi B, Galambosi Z, Uusitalo M, Mordal R, Heinonen A. Harvest time and drying temperature effect on secondary metabolites in Rhodiola rosea. Acta Hortic. 2012;955:243–52. https://doi.org/10.17660/ActaHortic.2012.955.35.
Article
Google Scholar
Zhao YH, Jia X, Wang WK, Liu T, Huang SP, Yang MY. Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd-and Pb-contaminated soils. Sci Total Environ. 2016;565:586–94. https://doi.org/10.1016/j.scitotenv.2016.05.058.
Article
CAS
PubMed
Google Scholar
Joshi N. Influence of light and temperature on secondary metabolite accumulation in callus cultures of Helicteres isora L. IOSR J Environ Sci Toxicol Food Technol. 2015;1(1):2319–99.
Google Scholar
Jochum GM, Mudge KW, Thomas RB. Elevated temperatures increase leaf senescence and root secondary metabolite concentration in the understory herb Panax quinquefolius (Araliaceae). Am J Bot. 2007;94:819–26. https://doi.org/10.3732/ajb.94.5.819.
Article
CAS
PubMed
Google Scholar
Griffith M, Yaish MW. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 2004;9(8):399–405. https://doi.org/10.1016/j.tplants.2004.06.007.
Article
CAS
PubMed
Google Scholar
Pérez-Ilzarbe J, Hernández T, Estrella I, Vendrell M. Cold storage of apples (cv. Granny Smith) and changes in phenolic compounds. Zeitschrift für Lebensmitteluntersuchung und-Forschung A. 1997;204(1):52–5. https://doi.org/10.1007/s002170050036.
Article
Google Scholar
Shohael AM, Ali MB, Yu KW, Hahn EJ, Paek KY. Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos. Plant Cell Tissue Organ Cult. 2006;85(2):219–28. https://doi.org/10.1007/s11240-005-9075-x.
Article
CAS
Google Scholar
Yu KW, Murthy HN, Hahn EJ, Paek KY. Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J. 2005;23(1):53–6. https://doi.org/10.1016/j.bej.2004.07.001.
Article
CAS
Google Scholar
Chan LK, Koay SS, Boey PL, Bhatt A. Effects of abiotic stress on biomass and anthocyanin production in cell cultures of Melastoma malabathricum. Biol Res. 2010;43(1):127–35. https://doi.org/10.4067/S0716-97602010000100014.
Article
CAS
PubMed
Google Scholar
Hura K, Rapacz M, Hura T, Żur I, Filek M. The effect of cold on the response of Brassica napus callus tissue to the secondary metabolites of Leptosphaeria maculans. Acta Physiol Plant. 2015;37(2):13. https://doi.org/10.1007/s11738-014-1751-1.
Article
CAS
Google Scholar
Rahimi S, Hasanloo T. The effect of temperature and pH on biomass and bioactive compounds production in Silybum marianum hairy root cultures. Res J Pharmacogn. 2016;3(2):53–9.
Google Scholar
Kumari M, Chandra S. Secondary metabolite production in transformed cultures: Stevioside glycosides production from Stevia rebaudiana hairy root cultures. In: Kumari M, Chandra S, editors. Transgenesis and secondary metabolism: part of the series reference series in phytochemistry. Berlin: Springer International Publishing; 2016. p. 1–19. https://doi.org/10.1007/978-3-319-27490-4_1-1.
Chapter
Google Scholar
Caldwell MM, Ballaré CL, Bornman JF, et al. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors. Photochem Photobiol Sci. 2003;2:29–38. https://doi.org/10.1039/b700019g.
Article
CAS
PubMed
Google Scholar
Isah T, Umar S. Influencing in vitro clonal propagation of Chonemorpha fragrans (moon) Alston by culture media strength, plant growth regulators, carbon source and photoperiodic incubation. J For Res. 2018. https://doi.org/10.1007/s11676-018-0794-3.
Article
Google Scholar
Radušienė J, Karpavičienė B, Stanius Ž. Effect of external and internal factors on secondary metabolites accumulation in St. John’s worth. Bot Lith. 2012;18(2):101–8. https://doi.org/10.2478/v10279-012-0012-8.
Article
Google Scholar
Miehe-Steier A, Roscher C, Reichelt M, Gershenzon J, Unsicker SB. Light and nutrient-dependent responses in secondary metabolites of Plantago lanceolata offspring are due to phenotypic plasticity in experimental grasslands. PLoS ONE. 2015;10(9):e0136073. https://doi.org/10.1371/journal.pone.0136073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pedroso RCN, Branquinho NAA, Hara AC, et al. Impact of light quality on flavonoid production and growth of Hyptis marrubioides seedlings cultivated in vitro. Rev Brasil Farmacogn. 2017;27(4):466–70. https://doi.org/10.1016/j.bjp.2016.12.004.
Article
CAS
Google Scholar
Li TSC, Mazza G, Cottrell AC, Gao L. Ginsenosides in roots and leaves of American ginseng. J Agric Food Chem. 1996;44(3):717–20. https://doi.org/10.1021/jf950309f.
Article
CAS
Google Scholar
Binder BY, Peebles CA, Shanks JV, San KY. The effects of UV-B stress on production of terpenoid indole-alkaloids in Catharanthus roseus hairy roots. Biotechnol Prog. 2009;25:8615. https://doi.org/10.1002/btpr.97.
Article
Google Scholar
Hu Y, Yu W, Song L, et al. Effects of light on the production of camptothecin and expression of key enzyme genes in seedlings of Camptotheca acuminate Decne. Acta Physiol Plant. 2016;38:65. https://doi.org/10.1007/s11738-016-2084-z.
Article
CAS
Google Scholar
Lorence A, Nessler CL. Molecules of interest camptothecin, over four decades of surprising findings. Phytochem. 2004;65:2735–49.
Article
CAS
Google Scholar
Kawka B, Kwiecień I, Ekiert H. Influence of culture medium composition and light conditions on the accumulation of bioactive compounds in shoot cultures of Scutellaria lateriflora L. (American Skullcap) grown in vitro. Appl Biochem Biotechnol. 2017;183:1414–25. https://doi.org/10.1007/s12010-017-2508-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahmad N, Rab A, Ahmad N. Light-induced biochemical variations in secondary metabolite production and antioxidant activity in callus cultures of Stevia rebaudiana (Bert). J Photochem Photobiol B Biol. 2016;154:51–6. https://doi.org/10.1016/j.jphotobiol.2015.11.015.
Article
CAS
Google Scholar
Chen CC, Agrawal DC, Lee MR, et al. Influence of LED light spectra on in vitro somatic embryogenesis and LC-MS analysis of chlorogenic acid and rutin in Peucedanum japonicum Thunb.: a medicinal herb. Bot Stud. 2016;57(1):9. https://doi.org/10.1186/s40529-016-0124-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali M, Abbasi BH. Light-induced fluctuations in the biomass accumulation, secondary metabolites production and antioxidant activity in the cell suspension cultures of Artemisia absinthium L. J Photochem Photobiol B Biol. 2014;140:223–7. https://doi.org/10.1016/j.jphotobiol.2014.08.008.
Article
CAS
Google Scholar
Anasori P, Asghari G. Effects of light and differentiation on gingerol and zingiberene production in the callus culture of Zingiber officinale Rosc. Planta Med. 2009;75(09):59–63. https://doi.org/10.1055/s-0029-1234839.
Article
Google Scholar
Dai SJ, Wang Y, Yan X, Ma M. Effects of color films on growth and camptothecin content in the leaves of Camptotheca acuminata seedlings. Acta Ecol Sin. 2004;24(5):869–75.
Google Scholar
Hu Y, Yu W, Song L, et al. Effect of light on production of camptothecin and expression of key enzyme genes in seedlings of Camptotheca acuminate Decne. Acta Physiol Plant. 2006;38:65. https://doi.org/10.1007/s11738-016-2084-z.
Article
CAS
Google Scholar
Liu CZ, Guo C, Wang Y, Ouyang F. Factors influencing artemisinin production from shoot cultures of Artemisia annua L. World J Microbiol Biotechnol. 2003;19(5):535–8.
Article
CAS
Google Scholar
Fett-Neto AG, Pennington JJ, DiCosmo F. Effect of white light on taxol and baccatin III accumulation in cell cultures of Taxus cuspidata Sieb & Zucc. J Plant Physiol. 1995;146(5–6):584–90. https://doi.org/10.1016/S0176-1617(11)81918-8.
Article
CAS
Google Scholar
Parikrama R, Esyanti RR. Effect of UV elicitation on callus growth, alkaloid and terpenoid contents in Eurycoma longifolia Jack. Int J Adv Chem Eng Biol Sci. 2014;1(1):12–5. https://doi.org/10.15242/IJACEBS.C1113054.
Article
Google Scholar
Parihar P, Singh S, Singh R, Singh VP, Prasad SM. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Poll Res. 2015;22(6):4056–75. https://doi.org/10.1007/s11356-014-3739-1.
Article
CAS
Google Scholar
Xu C, Tang X, Shao H, Wang H. Salinity tolerance mechanism of economic halophytes from physiological to molecular hierarchy for improving food quality. Curr Genom. 2016;17(3):207–14. https://doi.org/10.2174/1389202917666160202215548.
Article
CAS
Google Scholar
Manuka R, Karle SB, Kumar K. OsWNK9 mitigates salt and drought stress effects through induced antioxidant systems in Arabidopsis. Plant Physiol Rep. 2019. https://doi.org/10.1007/s40502-019-00448-w.
Article
Google Scholar
Sytar O, Barki S, Zivcak M, Brestic M. The involvement of different secondary metabolites in salinity tolerance of crops. In: Kumat V, editor. Salinity responses and tolerance in plants, vol. 2. Berlin: Springer International Publishing AG, part of Springer Nature; 2018. p. 21–48. https://doi.org/10.1007/978-3-319-90318-7_2.
Chapter
Google Scholar
Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239–50. https://doi.org/10.1046/j.0016-8025.2001.00808.x.
Article
CAS
PubMed
Google Scholar
Adak S, Roy A, Das P, Mukherjee A, Sengupta S, Majumder AL. Soil salinity and mechanical obstruction differentially affects embryonic root architecture in different rice genotypes from West Bengal. Plant Physiol Rep. 2019. https://doi.org/10.1007/s40502-019-00450-2.
Article
Google Scholar
Chaves MM, Pereira JS, Maroco J, et al. How plants cope with water stress in the field? photosynthesis and growth. Ann Bot. 2002;89(7):907–16. https://doi.org/10.1093/aob/mcf105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shabala S, Cuin TA. Potassium transport and plant salt tolerance. Physiol Plant. 2007;133(4):651–69. https://doi.org/10.1111/j.1399-3054.2007.01008.x.
Article
CAS
Google Scholar
Hamanishi ET, Barchet GL, Dauwe R, Mansfield SD, Campbell MM. Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype and time-of-day-dependent manner. BMC Genomics. 2015;16(1):329.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanchez DH, Lippold F, Redestig H, Hannah M, Erban A, Krämer U, Kopka J, Udvardi MK. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J. 2008;53(6):973–87. https://doi.org/10.1111/j.1365-313X.2007.03381.x.
Article
CAS
PubMed
Google Scholar
Munns R, Tester M. Mechanisms of salinity tolerance. Ann Rev Plant Biol. 2008;59:651–81. https://doi.org/10.1146/annurev.arplant.59.032607.092911.
Article
CAS
Google Scholar
Selmar D. Potential of salt and drought stress to increase pharmaceutical significant secondary compounds in plants. Landbauforschung Volkenrode Agric Forest Res. 2008;58(1/2):139–44.
Google Scholar
Aghaei K, Komatsu S. Crop and medicinal plants proteomics in response to salt stress. Front Plant Sci. 2013;4:8. https://doi.org/10.3389/fpls.2013.00008.
Article
PubMed
PubMed Central
Google Scholar
El-Hendawy S, Elshafei A, Al-Suhaibani N, et al. Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. J Plant Interact. 2019;14(1):151–63. https://doi.org/10.1080/17429145.2019.1603406.
Article
Google Scholar
El-Hendawy S, Al-Suhaibani N, Dewir YH, et al. Ability of modified spectral reflectance indices for estimating growth and photosynthetic efficiency of Wheat under saline field conditions. Agronomy. 2019;9(1):35. https://doi.org/10.3390/agronomy9010035.
Article
Google Scholar
Harborne JB. Classes and functions of secondary products from plants. In: Walton NJ, DE Brown, editors. Chemicals from plants, perspectives on secondary plant products. London: Imperial college press; 1999. p. 1–25.
Google Scholar
Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: a historical perspective. Plant Sci. 2001;161(5):839–51. https://doi.org/10.1016/S0168-9452(01)00490-3.
Article
CAS
Google Scholar
Omamt EN, Hammes PS, Robbertse PJ. Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes. N Z J Crop Hortic Sci. 2006;34:11–22. https://doi.org/10.1080/01140671.2006.9514382.
Article
Google Scholar
Sujata B, Kshitija S. Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed. 2013;132(1):21–32. https://doi.org/10.1111/pbr.12004.
Article
CAS
Google Scholar
Martinez JP, Kinet JM, Bajji M, Lutts S. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Expt Bot. 2005;56:2421–31. https://doi.org/10.1093/jxb/eri235.
Article
CAS
Google Scholar
Yi G, Lei Z, Zhong-Ji S, et al. Stomatal clustering, a new marker for environmental perception and adaptation in terrestrial plants. Bot Stud. 2010;51:325–36.
Google Scholar
Fu XZ, Ullah Khan E, Hu SS, Fan QJ, Liu JH. Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Environ Exp Bot. 2011;74:106–13. https://doi.org/10.1016/j.envexpbot.2011.05.006.
Article
CAS
Google Scholar
Abideen Z, Qasim M, Rasheed A, et al. Antioxidant activity and polyphenolic content of Phragmites karka under saline conditions. Pak J Bot. 2015;47(3):813–8.
CAS
Google Scholar
Hossain MS, Persicke M, ElSayed AI, Kalinowski J, Dietz KJ. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. J Exp Bot. 2017;68(21–22):5961–76. https://doi.org/10.1093/jxb/erx388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiol Plant. 2008;132(2):199–208. https://doi.org/10.1111/j.1399-3054.2007.01025.x.
Article
CAS
PubMed
Google Scholar
Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 2005;444(2):139–58. https://doi.org/10.1016/j.abb.2005.10.018.
Article
CAS
PubMed
Google Scholar
Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 2003;218:1–14. https://doi.org/10.1007/s00425-003-1105-5.
Article
CAS
PubMed
Google Scholar
Briens M, Larher F. Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ. 1982;5:287–92. https://doi.org/10.1111/1365-3040.ep11572682.
Article
CAS
Google Scholar
Flowers TJ, Colmer TD. Plant salt tolerance: adaptations in halophytes. Ann Bot. 2015;115(3):327–31. https://doi.org/10.1093/aob/mcu267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Šutković J, Lerl D, Ragab MGA. In vitro production of solasodine alkaloid in Solanum nigrum under salinity stress. J Phytol. 2011;3(1):43–9.
Google Scholar
Slama I, M’Rabet R, Ksouri R, et al. Effects of salt treatment on growth, lipid membrane peroxidation, polyphenol content, and antioxidant activities in leaves of Sesuvium portulacastrum L. Arid Land Res Manag. 2017;31:1–14. https://doi.org/10.1080/15324982.2017.1329759.
Article
CAS
Google Scholar
Mahmoudi H, Huang J, Gruber MY, Kaddour R, Lachaâl M, Ouerghi Z, Hannoufa A. The impact of genotype and salinity on physiological function, secondary metabolite accumulation, and antioxidative responses in lettuce. J Agric Food Chem. 2010;58(8):5122–30. https://doi.org/10.1021/jf904274v.
Article
CAS
PubMed
Google Scholar
Boestfleisch C, Papenbrock J. Changes in secondary metabolites in the halophytic putative crop species Crithmum maritimum L., Triglochin maritima L. and Halimione portulacoides (L.) Aellen as reaction to mild salinity. PLoS ONE. 2017;12(4):0176303. https://doi.org/10.1371/journal.pone.0176303.
Article
CAS
Google Scholar
Hashemi A, Shahani A. Effects of salt stress on the morphological characteristics, total phenol and total anthocyanin contents of Roselle (Hibiscus sabdariffa L). Plant Physiol Rep. 2019;1:1. https://doi.org/10.1007/s40502-019-00446-y.
Article
CAS
Google Scholar
Jdey A, Falleh H, Jannet SB, et al. Anti-aging activities of extracts from Tunisian medicinal halophytes and their aromatic constituents. EXCLI J. 2017;16:755–69. https://doi.org/10.17179/excli2017-244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szabó B, Tyihák E, Szabó G, Botz L. Mycotoxin and drought stress induced change of alkaloid content of Papaver somniferum plantlets. Acta Bot Hung. 2003;45(3):409–17. https://doi.org/10.1556/ABot.45.2003.3-4.15.
Article
Google Scholar
Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Panneerselvam R. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. C R Biol. 2007;330(9):674–83. https://doi.org/10.1016/j.crvi.2007.07.002.
Article
CAS
PubMed
Google Scholar
Petridis A, Therios I, Samouris G, Tananaki C. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot. 2012;79:37–43. https://doi.org/10.1016/j.envexpbot.2012.01.007.
Article
CAS
Google Scholar
Parida AK, Das AB. Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf. 2005;60(3):324–49. https://doi.org/10.1016/j.ecoenv.2004.06.010.
Article
CAS
PubMed
Google Scholar
Dixon RA, Gang DR, Charlton AJ, et al. Application of metabolomics in agriculture. J Agric Food Chem. 2006;54:8984–94. https://doi.org/10.1021/jf061218t.
Article
CAS
PubMed
Google Scholar
Arbona V, Manzi M, Ollas C, Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Intl J Mol Sci. 2013;14(3):4885–911. https://doi.org/10.3390/ijms14034885.
Article
CAS
Google Scholar
Okazaki Y, Saito K. Integrated metabolomics and phytochemical genomics approaches for studies on rice. GigaScience. 2016;5(1):11. https://doi.org/10.1186/s13742-016-0116-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim J, Buell CR. A revolution in plant metabolism: genome-enabled pathway discovery. Plant Physiol. 2015;169(3):1532–9.
CAS
PubMed
PubMed Central
Google Scholar
Hong J, Yang L, Zhang D, Shi J. Plant metabolomics: an indispensable system biology tool for plant science. Int J Mol Sci. 2016;17:767. https://doi.org/10.3390/ijms17060767.
Article
CAS
PubMed Central
Google Scholar
Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M. Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant. 2014;36(1):1–19. https://doi.org/10.1007/s11738-013-1402-y.
Article
CAS
Google Scholar
Gottelt M, Kol S, Gomez-Escribano JP, Bibb M, Takano E. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2). Microbiology. 2010;156:2343–53. https://doi.org/10.1099/mic.0.038281-0.
Article
CAS
PubMed
Google Scholar
Lim FY, Sanchez JF, Wang CCC, Keller NP. Toward awakening cryptic secondary metabolite gene clusters in filamentous fungi. Meth Enzymol. 2012;517:303–24. https://doi.org/10.1016/B978-0-12-404634-4.00015-2.
Article
CAS
Google Scholar
Piasecka A, Kachlicki P, Stobiecki M. Analytical methods for detection of plant metabolomes changes in response to biotic and abiotic stresses. Int J Mol Sci. 2019;20:379. https://doi.org/10.3390/ijms20020379.
Article
CAS
PubMed Central
Google Scholar
Wang Y, Zeng X, Xu Q, et al. Metabolite profiling in two contrasting Tibetan hulless barley cultivars revealed the core salt-responsive metabolome and key salt-tolerance biomarkers. AoB Plants. 2019;11(2):021. https://doi.org/10.1093/aobpla.
Article
Google Scholar
Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscissic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 2003;133:1755–67. https://doi.org/10.1104/pp.103.025742.
Article
CAS
PubMe