Morales R, Charon MH, Kachalova G, Serre L, Medina M, Gomez-Moreno C, Frey M. A redox-dependent interaction between two electron-transfer partners involved in photosynthesis. EMBO Rep. 2000;1(3):271–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goss T, Hanke G. The end of the line: can ferredoxin and FxNADP(H) oxidoreductase determine the fate of photosynthetic electrons? Curr Protein Pept Sci. 2014;15:285–93.
Article
Google Scholar
Gummadova JO, Fletcher GJ, Moolna A, Hanke GT, Hase T, Bowsher C. Expression of multiple forms of ferredoxin NADP+ oxidoreductase in wheat leaves. J Exp Bot. 2007;58:3971–85.
Article
CAS
PubMed
Google Scholar
Zhang H, Whitelegges JP, Cramer WA. Ferredoxin: NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. J Biol Chem. 2001;276:38159–65.
CAS
PubMed
Google Scholar
Guedeney G, Corneille S, Cuiné S, Peltier G. Evidence for an association of ndh B, ndh J gene products and ferredoxin-NADP-reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett. 1996;378:277–80.
Article
CAS
PubMed
Google Scholar
Küchler M, Decker S, Hörmann F, Soll J, Heins L. Protein import into chloroplasts involves redox-regulated proteins. EMBO J. 2002;21:6136–45.
Article
PubMed
PubMed Central
Google Scholar
Lintala M, Schuck N, Thormählen I, Jungfer A, Weber KL, Weber AP, Geigenberger P, Soll J, Bölter B, Mulo P. Arabidopsis tic62 trol mutant lacking thylakoid-bound ferredoxin-NADP(+) oxidoreductase shows distinct metabolic phenotype. Mol Plant. 2014;7:45–57.
Article
CAS
PubMed
Google Scholar
Hanke GT, Okutani S, Satomi Y, Takao T, Suzuki A, Hase T. Multiple iso-proteins of FNR in Arabidopsis: evidence for different contributions to chloroplast function and nitrogen assimilation. Plant Cell Environ. 2005;28:1146–57.
Article
CAS
Google Scholar
Mulo P. Chloroplast–targeted ferredoxin-NADP(+) oxidoreductase (FNR): structure, function and location. Biochim Biophys Acta. 2011;1807:927–34.
Article
CAS
PubMed
Google Scholar
Wandersleben, T. Aislamiento y caracterización de una Ferredoxina NADP+ reductasa putativa de Gracilaria chilensis (Isolation and characterization of a putative NADP+ reductase from Gracilaria chilensis), Biochemistry Thesis, Universidad de Concepción, Chile, 2004.
Paladini DH, Musumeci MA, Carrillo N, Ceccarelli EA. Induced fit and equilibrium dynamics for high catalytic efficiency in ferredoxin-NADP(H) reductases. Biochemistry. 2009;48:5760–8.
Article
CAS
PubMed
Google Scholar
Karplus PA, Daniels MJ, Herriott JR. Atomic structure of ferredoxin-NADP+ reductase: prototype for a structurally novel flavoenzyme family. Science. 1991;251:60–6.
Article
CAS
PubMed
Google Scholar
Martínez-Júlvez M, Medina M, Gómez-Moreno C. Ferredoxin-NADP+ reductase uses the same site for the interaction with ferredoxin and flavodoxin. J Biol Inorg Chem. 1999;4:568–78.
Article
PubMed
Google Scholar
Morsy FM, Nakajima M, Yoshida T, Fujiwara T, Sakamoto T, Wada K. Subcellular localization of ferredoxin-NADP(+) oxidoreductase in phycobilisome retaining oxygenic photosynthetic organisms. Photosynth Res. 2008;95:73–85.
Article
CAS
PubMed
Google Scholar
Gómez-Lojero C, Pérez-Gómez B, Shen G, Schluchter WM, Bryant DA. Interaction of ferredoxin: NADP(+)oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry. 2003;42:13800–11.
Article
PubMed
Google Scholar
Nakajima M, Sakamoto T, Wada K. The complete purification and characterization of three forms of ferredoxin-NADP(+) oxidoreductase from a thermophilic cyanobacterium Synechococcus elongates. Plant Cell Physiol. 2002;43:484–93.
Article
CAS
PubMed
Google Scholar
van Thor JJ, Jeanjean R, Havaux M, Sjollema KA, Joset F, Hellingwerf KJ, Matthijs HC. Salt shock-inducible photosystem I cyclic electron transfer in Synechocystis PCC6803 relies on binding of ferredoxin: NADP(+) reductase to the thylakoid membranes via its CpcD phycobilisome-linker homologous N-terminal domain. Biochim Biophys Acta. 2000;1457:129–44.
Article
PubMed
Google Scholar
Piubelli L, Aliverti A, Arakaki AK, Carrillo N, Ceccarelli EA, Karplus PA, Zanetti G. Competition between C-terminal tyrosine and nicotinamide modulates pyridine nucleotide affinity and specificity in plant ferredoxin-NADP(+) reductase. J Biol Chem. 2000;275:10472–6.
Article
CAS
PubMed
Google Scholar
Meyer J. Ferredoxins of the third kind. FEBS Lett. 2001;509(1):1–5.
Article
CAS
PubMed
Google Scholar
Peregrina JR, Sánchez-Azqueta A, Herquedas B, Martínez-Julvez M, Medina M. Role of specific residues in coenzyme binding, charge-transfer complex formation, and catalysis in Anabaena ferredoxin NADP+-reductase. Biochim Biophys Acta. 2010;1797:1638–46.
Article
CAS
PubMed
Google Scholar
Hermoso JA, Mayoral T, Faro M, Gómez-Moreno C, Sanz-Aparicio J, Medina M. Mechanism of coenzyme recognition and binding revealed by crystal structure analysis of ferredoxin-NADP+ reductase complexed with NADP+. J Mol Biol. 2002;319:1133–42.
Article
CAS
PubMed
Google Scholar
Bird CJ, McLachlan J, de Oliveira Filho EC. Gracilaria chilensis sp. nov. (Rhodophyta, Gigartinales), from Pacific South America. Can J Bot. 1986;64:2928–34.
Article
Google Scholar
Bunster M, Contreras C, Bruna C, Martínez-Oyanedel J. R-Ficoeritrina de Gracilaria chilensis: estabilidad e interacciones entre subunidades. Bol Soc Chil Quím. 1997;45:303–9.
Google Scholar
Glazer AN. Phycobilisomes: structure and dynamics. Annu Rev Microbiol. 1982;36:173–98.
Article
CAS
PubMed
Google Scholar
Bruna, C. Purificación y caracterización de ficobilisomas de Gracilaria chilensis, Biochemistry Thesis, Universidad de Concepción, Chile; 2001.
Quiles MJ, Cuello J. Association of ferredoxin-NADP oxidoreductase with the chloroplastic pyridine nucleotide dehydrogenase complex in barley leaves. Plant Physiol. 1998;117:235–44.
Article
Google Scholar
Cornejo J, Beale SI. Algal heme oxygenases. In: Smith A, Witty M, editors. Heme, chlorophyll and bilins: methods and protocols. New York: Humana Press Inc; 2002.
Google Scholar
Jin T, Morigasaki S, Wada K. Purification and characterization of two ferredoxin-NADP+ oxidoreductase isoforms from the first foliage leaves of mung bean (Vignaradiata) seedlings. Plant Physiol. 1994;106:697–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neumann U. Quantitation of proteins separated by electrophoresis using Coomassie brilliant blue. In: Walker JM, editor. The protein protocols handbook. 1st ed. Totowa: Humana Press; 1996. p. 173–8.
Chapter
Google Scholar
Korbie DJ, Mattick JS. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc. 2008;3:1452–6.
Article
CAS
PubMed
Google Scholar
Ruano G, Fenton W, Kidd KK. Biphasic amplification of very dilute DNA samples via ‘booster’ PCR. Nucleic Acids Res. 1989;17(13):5407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vorphal MA, Gallardo-Escárate C, Valenzuela-Muñoz V, Dagnino-Leone J, Vásquez JA, Martínez-Oyanedel J, Bunster M. De novo transcriptome analysis of the red seaweed Gracilaria chilensis and identification of linkers associated with phycobilisomes. Mar Genom. 2017;31:17–9.
Article
Google Scholar
Madden T. The BLAST sequence analysis tool, Chapter 16. In: McEntyre J, Ostell J, editors. The NCBI handbook. Bethesda: National Center for Biotechnology Information (US); 2002. http://www.ncbi.nlm.nih.gov/books/NBK21097/. Accessed 7 Apr 2017.
Emanuelsson O, Nielsen H, von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999;8(5):978–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15:2507–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales R, Kachalova G, Veilleiux F, Charon MH, Frey M. Crystallographic studies of the interaction between the ferredoxin-NADP+ reductase and ferredoxin from the cyanobacterium Anabaena: looking for the elusive ferredoxin molecule. Acta Crystallogr D Biol Crystallogr. 2000;56:1408–12.
Article
CAS
PubMed
Google Scholar
Kurisu G, Kusunoki M, Katoh E, Yamazaki T, Teshima K, Onda Y, Kimata-Ariga Y. Structure of the electron transfer complex between ferredoxin and ferredoxin-NADP(+) reductase. Nat Struct Biol. 2001;8(2):117–21.
Article
CAS
PubMed
Google Scholar
Bruns CM, Kaplus PA. Refined crystal structure of spinach ferredoxin reductase at 1.7 A resolution: oxidized, reduced and 2′-phospho-5′-AMP bound states. J Mol Biol. 1995;247:125–45.
Article
CAS
PubMed
Google Scholar
Deng Z, Aliverti A, Zanetti G, Arakaki AK, Ottado J, Orellano EG, Calcaterra NB, Ceccarelli EA, Carrillo N, Karplus PA. A productive NADP+ binding mode of ferredoxin-NADP+ reductase revealed by protein engineering and crystallographic studies. Nat Struct Biol. 1999;6(9):847–53.
Article
CAS
PubMed
Google Scholar
Wiederstein M, Sippl MJ. PROSA-web: interactive web service for the recognition of errors in the three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–10.
Article
PubMed
PubMed Central
Google Scholar
Laskowski MA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. 1993;26:283–91.
Article
CAS
Google Scholar
Fish A, Danieli T, Ohad I, Nechushtai R, Livnah O. Structural basis for the thermostability of ferredoxin from the cyanobacterium Mastigocladus laminosus. J Mol Biol. 2005;350:599–608.
Article
CAS
PubMed
Google Scholar
Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res. 2004;32:W96–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372:774–97.
Article
CAS
PubMed
Google Scholar
Boethling RS, Weaver TL. A new assay for diaphorase activity in reagent formulations, based on the reduction of thiazolyl blue. Clin Chem. 1979;25:2040–2.
CAS
PubMed
Google Scholar
Mayoral T, Martínez-Júlvez M, Pérez-Dorado I, Sanz-Aparicio J, Gómez-Moreno C, Medina M. Structural analysis of interactions for complex formation between ferredoxin NADP+ reductase and its protein partners. Proteins. 2005;59(3):592–602.
Article
CAS
PubMed
Google Scholar
Aliverti A, Pandini V, Pennati A, de Rosa M, Zaneti G. Structural and functional diversity of ferredoxin-NADP+ reductases. Arch Biochem Biophys. 2008;474:283–91.
Article
CAS
PubMed
Google Scholar
Tejero J, Perez-Dorado I, Martínez-Julvez M, Gómez-Moreno C, Hermoso JA, Medina M. C-terminal tyrosine of ferredoxin NADP+ reductase in hydride transfer processes with NAD (P)+H. Biochemistry. 2005;44:13477–90.
Article
CAS
PubMed
Google Scholar
Antonini LV, Peregrina JR, Angulo J, Medina M, Nieto PM. A STD-NMR study of the interaction of the Anabaena ferredoxin NADP+ reductase with the coenzyme. Molecules. 2014;19:672–85.
Article
PubMed
Google Scholar
Hanke G, Mulo P. Plant type ferredoxins and ferredoxin dependent metabolism. Plant Cell Environ. 2013;36(6):1071–84.
Article
CAS
PubMed
Google Scholar
Onda Y, Matsumara T, Kimata-Ariga Y, Sakakibara H, Sugiyama T, Hase T. Differential interaction of maize root ferredoxin: NADP+ oxidoreductase with photosynthetic and non-photosynthetic ferredoxin isoproteins. Plant Physiol. 2000;123:1037–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reddy CRK, Gupta V, Jha B. Developments in biotechnology of red algae. In: Seckbach J, Chapman D, editors. Red algae in the genomic age (cellular origen, life in extreme habitats and astrobiology), vol. 13. 1st ed. Netherlands: Springer; 2010. p. 309–34.
Google Scholar
Korn A, Ajlani G, Lagoutte B, Gall A, Sétif P. Ferredoxin: NADP+ oxidoreductase association with phycocyanin modulates its properties. J Biol Chem. 2009;284:31789–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature. 2004;428:653–7.
Article
CAS
PubMed
Google Scholar
Thomas JC, Ughy B, Lagoutte B, Ajlan G. A second isoform of the ferredoxin: NADP oxidoreductase generated by an in-frame initiation of translation. Proc Natl Acad Sci USA. 2006;103:18368–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nyvall Collén P, Collén J, da Silva Reis M, Pedersén M, Setubal JC, Varani AM, Colepicolo P, Oliveira MC. Analysis of expressed sequence tags from the agarophyte Gracilaria tenuistipitata (Rhodophyta). J Appl Phycol. 2011;24:641–7.
Article
Google Scholar
Alte F, Stengel A, Benz JP, Petersen E, Soll J, Groll M, Bölte B. Ferredoxin: NADPH oxidoreductase is recruited to thylakoids by binding to a polyproline type II helix in a pH dependent manner. PNAS. 2010;107(45):19260–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balsera M, Stengel A, Soll J, Bolter B. Tic62, a protein family, from metabolism to protein translocation. Evol Biol. 2007;7:43.
Google Scholar
Juric S, Hazler-Pilepic K, Tomasic A, Lepeduš H, Jeličić B, Puthiyaveetil S, Bionda T, Vojta L, Allen JF, Schleiff E, Fulgosi H. Tethering of Ferredoxin NADP+ reductaseto thylakoid membranesis mediated by novel chloroplast protein Trol. Plant J. 2009;60:783–94.
Article
CAS
PubMed
Google Scholar
Vojta L, Fulgosi H. Data supporting the absence of FNR dynamic photosynthetic membrane recruitment in trol mutants. Data Brief. 2016;7:393–6.
Article
PubMed
PubMed Central
Google Scholar