Shi F, Feng N, Omari-Siaw E. Realgar nanoparticle-based microcapsules: preparation and in vitro/in vivo characterizations. J Pharm Pharmacol. 2015;67(1):35–42.
Article
CAS
PubMed
Google Scholar
Samuel W, Kenneth A. History of the development of arsenic derivatives in cancer therapy. Oncologist. 2001;6(suppl 2):3–10.
Google Scholar
Liu J, Lu Y, Wu Q, Goyer RA, Waalkes MP. Mineral arsenicals in traditional medicines: orpiment, realgar, and arsenolite. J Pharmacol Exp Ther. 2008;326(2):363–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Shao Y, Liu J, Chen G, Ho PC. The medicinal use of realgar (As4S4) and its recent development as an anticancer agent. J Ethnopharmacol. 2011;135(3):595–602.
Article
CAS
PubMed
Google Scholar
Tinggi U, Sadler R, Ng J, Noller B, Seawright A. Bioavailability study of arsenic and mercury in traditional Chinese medicines (TCM) using an animal model after a single dose exposure. Regul Toxicol Pharmacol. 2016;76:51–6.
Article
CAS
PubMed
Google Scholar
Zhang JH, Zhang B, Wang XQ, Pang RJ, Li HY. Enhancement of a bioleaching solution for dissolution rate and bioavailability of medical realgar, a poorly water-soluble arsenical compound (AS2S2) by bacteria. J Biotechnol. 2008;136(Supplement 1):S499.
Article
Google Scholar
Man S, Gao W, Wei C, Liu C. Anticancer drugs from traditional toxic Chinese medicines. Phytother Res. 2012;26(10):1449–65.
CAS
PubMed
Google Scholar
Klaassen CD. Heavy metals and heavy-metal antagonists. Pharmacol Basis Ther. 1996;12:1851–75.
Google Scholar
Evens AM, Tallman MS, Gartenhaus RB. The potential of arsenic trioxide in the treatment of malignant disease: past, present, and future. Leuk Res. 2004;28(9):891–900.
Article
CAS
PubMed
Google Scholar
Zhang X, Yan X, Zhou Z, Yang F, Wu Z, Sun H, Liang W, Song A, Lallemand Breitenbach V, Jeanne M, Zhang Q, Yang H, Huang Q, Zhou G, Tong J, Zhang Y, Wu J, Hu H, de Thé H, Chen S, Chen Z. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science. 2010;328(5975):240–3.
Article
CAS
PubMed
Google Scholar
Wang Z. Compounds as anticancer agents. Cancer Chemother Pharmacol. 2001;48(1):72–7.
Article
Google Scholar
Jiang XH, Chun-Yu Wong B, Yuen ST, Jiang SH, Cho CH, Lai KC, Lam SK. Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of P53 and activation of caspase-3. Int J Cancer. 2001;91(2):173–9.
Article
CAS
PubMed
Google Scholar
Oketani M, Kohara K, Tuvdendorj D, Ishitsuka K, Komorizono Y, Ishibashi K, Arima T. Inhibition by arsenic trioxide of human hepatoma cell growth. Cancer Lett. 2002;183(2):147–53.
Article
CAS
PubMed
Google Scholar
Xie D, Yin S, Ou Y, Bai H, Ding F, Wang X, Wu M. Arsenic trioxide (As2O3)induced apoptosis and its mechanisms in a human esophageal squamous carcinoma cell line. Chinese Med J. 2002;115(2):280–5.
CAS
Google Scholar
Shen ZY, Shen J, Chen MH, Wu XY, Wu MH, Zeng Y. The inhibition of growth and angiogenesis in heterotransplanted esophageal carcinoma via intratumoral injection of arsenic trioxide. Oncol Rep. 2003;10(6):1869–74.
CAS
PubMed
Google Scholar
Knock FE, Galt RM, Oester YT, Renaud OV, Sylvester R. The use of selected sulfhydryl inhibitors in a preferential drug attack on cancer. Surg Gynecol Obstet. 1971;133(3):458–66.
CAS
PubMed
Google Scholar
Wang Y, Zhao J, Ge C, Yang P. Reversal effect and mechanism of realgar on multidrug resistance in breast tumor cells MCF-7/ADM. Progr Anat Sci. 2002;9(2):135–8.
Google Scholar
Dilda PJ, Pierre J. Arsenical-based cancer drugs. Cancer Treat Rev. 2007;33(6):542–64.
Article
CAS
PubMed
Google Scholar
Arleth N, Bestgen S, Gamer MT, Roesky PW. Realgar as a building block for lanthanide clusters: encapsulation of a copper cluster by a lanthanide cluster. J Am Chem Soc. 2014;136(40):14023–6.
Article
CAS
PubMed
Google Scholar
Zhang F, Lu Y, Wu Q, Yan J, Shi J, Liu J. Role of cinnabar and realgar of WSHFD in protecting against LPS-induced neurotoxicity. J Ethnopharmacol. 2012;139(3):822–8.
Article
CAS
PubMed
Google Scholar
Kim BG, Kwon HY, Sohn EJ, Hwang S, sung Kwon O, Kim SH. Activation of caspases and inhibition of ribosome biogenesis mediate antitumor activity of Chijongdan in A549 nonsmall lung cancer cells. BMC Complement Altern Med. 2014;14(1):420.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Qiang S, Sun J, Song M, Hang T. Liquid chromatography-hydride generation-atomic fluorescence spectrometry determination of arsenic species in dog plasma and its application to a pharmacokinetic study after oral administration of Realgar and Niu Huang Jie Du Pian. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;917–918:93–9.
Article
PubMed
Google Scholar
Lu YF, Wu Q, Yan JW, Shi JZ, Liu J, Shi JS. Realgar, cinnabar and An-Gong-Niu-Huang Wan are much less chronically nephrotoxic than common arsenicals and mercurials. Exp Biol Med (Maywood). 2011;236(2):233–9.
Article
CAS
Google Scholar
Huo T, Zhang Y, Li W, Yang H, Jiang H, Sun G. Effect of realgar on extracellular amino acid neurotransmitters in hippocampal CA1 region determined by online microdialysis-dansyl chloride derivatization-high-performance liquid chromatography and fluorescence detection. Biomed Chromatogr. 2014;28(9):1254–62.
Article
CAS
PubMed
Google Scholar
Wang Y, Chen M, Zhang Y, Huo T, Fang Y, Jiao X, Yuan M, Jiang H. Effects of realgar on GSH synthesis in the mouse hippocampus: involvement of system XAG-, system XC-, MRP-1 and Nrf2. Toxicol Appl Pharmacol. 2016;308:91–101.
Article
CAS
PubMed
Google Scholar
Jiang H, Ding JH, Zhang YH, Shi ST, Gao S, Gong HZ, Sun GF. Study on water processing conditions of realgar. J Chinese Med Mater. 2009;32(1):26–8.
Google Scholar
Tian Y, Wang X, Xi R, Pan W, Jiang S, Li Z, Zhao Y, Gao G, Liu D. Enhanced antitumor activity of realgar mediated by milling it to nanosize. Int J Nanomedicine. 2014;9:745–57.
PubMed
PubMed Central
Google Scholar
Ma Q, Wang C, Li X, Guo H, Meng J, Liu J, Xu H. Fabrication of water-soluble polymer-encapsulated As4S4 to increase oral bioavailability and chemotherapeutic efficacy in AML mice.Sci Rep.2016;6(1). doi:10.1038/srep29348
Zhao QH, Zhang Y, Liu Y, Wang HL, Shen YY, Yang WJ, Wen LP. Anticancer effect of realgar nanoparticles on mouse melanoma skin cancer in vivo via transdermal drug delivery. Med Oncol. 2010;27(2):203–12.
Article
CAS
PubMed
Google Scholar
Liu R, Pu D, Liu Y, Cheng Y, Yin L, Li T, Zhao L. Induction of SiHa cells apoptosis by nanometer realgar suspension and its mechanism. J Huazhong Univ Sci Technol Med Sci. 2008;28(3):317–21.
Article
PubMed
Google Scholar
An YL, Nie F, Wang ZY, Zhang DS. Preparation and characterization of realgar nanoparticles and their inhibitory effect on rat glioma cells. Int J Nanomed. 2011;6:3187–94.
Article
CAS
Google Scholar
Deng Y, Xu H, Huang K, Yang X, Xie C, Wu J. Size effects of realgar particles on apoptosis in a human umbilical vein endothelial cell line: ECV-304. Pharmacol Res. 2001;44(6):513–8.
Article
CAS
PubMed
Google Scholar
Watling HR. The bioleaching of sulphide minerals with emphasis on copper sulphides—a review. Hydrometallurgy. 2006;84(1–2):81–108.
Article
CAS
Google Scholar
Habashi F. A short history of hydrometallurgy. Hydrometallurgy. 2005;79(1–2):15–22.
Article
CAS
Google Scholar
Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiol Ecol. 2003;44(2):139–52.
Article
CAS
PubMed
Google Scholar
Brierley LC. Biological processing: biological processing of sulfidic ores and concentrates—integrating innovations. Dev Metall Ind. 2016:109–135.
Rawlings DE, Dew D, du Plessis C. Biomineralization of metal-containing ores and concentrates. Trends Biotechnol. 2003;21(1):38–44.
Article
CAS
PubMed
Google Scholar
Johnson DB, Du Plessis CA. Biomining in reverse gear: using bacteria to extract metals from oxidised ores. Miner Eng. 2015;75:2–5.
Article
CAS
Google Scholar
Deveci H, Akcil A, Alp I. Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy. 2004;73(3):293–303.
Article
CAS
Google Scholar
Park JH, Han Y, Lee E, Choi U, Yoo K, Song Y, Kim H. Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans. Sep Purif Technol. 2014;133:291–6.
Article
CAS
Google Scholar
Songrong Y, Jiyuan X, Guanzhou Q, Yuehua H. Research and application of bioleaching and biooxidation technologies in China. Miner Eng. 2002;15(5):361–3.
Article
Google Scholar
Li LL, Lv ZS, Zuo ZY, Yang ZH, Yuan XL. Effect of energy source and leaching method on bio-leaching of rock phosphates by Acidithiobacillus ferrooxidans. Hydrometallurgy. 2016;164:238–47.
Article
CAS
Google Scholar
Dave SR, Gupta KH, Tipre DR. Characterization of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus ferrooxidans from Hutti gold leachate and effluents. Bioresour Technol. 2008;99(16):7514–20.
Article
CAS
PubMed
Google Scholar
Xu Y, Yang M, Yao T, Xiong H. Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite. J Environ Sci (China). 2014;26(7):1463–70.
Article
CAS
Google Scholar
Yan L, Yin H, Zhang S, Duan JG, Li Y, Chen P, Li HY. Organoarsenic resistance and bioremoval of Acidithiobacillus ferrooxidans. Bioresour Technol. 2010;101(16):6572–5.
Article
CAS
PubMed
Google Scholar
Leng FF, Li KY, Zhang XX, Li YQ, Zhu Y, Lu JF, Li HY. Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Hydrometallurgy. 2009;98(3):235–40.
Article
CAS
Google Scholar
Watkin EL, Keeling SE, Perrot FA, Shiers DW, Palmer ML, Watling HR. Metals tolerance in moderately thermophilic isolates from a spent copper sulfide heap, closely related to Acidithiobacillus caldus, Acidimicrobium ferrooxidans and Sulfobacillus thermosulfidooxidans. J Ind Microbiol Biotechnol. 2009;36(3):461–5.
Article
CAS
PubMed
Google Scholar
Chen P, Yan L, Leng F, Nan W, Yue X, Zheng Y, Feng N, Li H. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Bioresour Technol. 2011;102(3):3260–7.
Article
CAS
PubMed
Google Scholar
Zhang JH, Zhang X, Ni YQ, Yang XJ, Li HY. Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochem. 2007;42(9):1265–71.
Article
CAS
Google Scholar
Leng FF, Sun SC, Wang YG, Jing YG, Wei QW, Li HY. Arsenic bioleaching in medical realgar ore and arsenic bearing refractory gold ore by combination of Acidithiobacillus ferrooxidans and Acidithiobacillus. Trop J Pharm Res. 2016;15(5):1031–8.
Article
CAS
Google Scholar
Watling HR, Johnson JJ, Shiers DW, Gibson JAE, Nichols PD, Franzmann PD, Plumb JJ. Effect of temperature and inoculation strategy on Cu recovery and microbial activity in column bioleaching. Hydrometallurgy. 2016;164:189–201.
Article
CAS
Google Scholar
Deveci H, Akcil A, Alp I. Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: comparative importance of pH and iron. Hydrometallurgy. 2004;73(3–4):293–303.
Article
CAS
Google Scholar
Chen P, Yan L, Wang Q, Li H. Arsenic precipitation in the bioleaching of realgar using Acidithiobacillus ferrooxidans. J Appl. 2013;2013:1–5.
Google Scholar
Chen P, Yan L, Yue XX, Li H. Optimal parameters for bioleaching of realgar using Acidithiobacillus ferrooxidansunder different growth conditions and mathematical analysis. Biocatal Biotransform. 2013;31(1):33–41.
Article
Google Scholar
Yu RL, Zh DL, Relationship and effect of redox potential, jarosites and extracellular polymeric substances in bioleaching chalcopyrite by acidithiobacillus ferrooxidans. Trans Nonferr Metals Soc China. 2011;21(7):1634–40.
Article
CAS
Google Scholar
Baron D, Palmer CD. Solubility of jarosite at 4–35°C. Geochim Cosmochim Acta. 1996;60(2):185–95.
Article
CAS
Google Scholar
Malhotra S, Tankhiwale AS, Rajvaidya AS, Pandey RA. Optimal conditions for bio-oxidation of ferrous ions to ferric ions using Thiobacillus ferrooxidans. Bioresour Technol. 2002;85(3):225–34.
Article
CAS
PubMed
Google Scholar
Asta MP, Cama J, Martinez M, Gimenez J. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater. 2009;171(1–3):965–72.
Article
CAS
PubMed
Google Scholar
Ahmadi A, Khezri M, Abdollahzadeh A, Askari M. Bioleaching of copper, nickel and cobalt fromthe low grade sulfidic tailing of Golgohar iron mine, Iran. Hydrometallurgy. 2015;154:1–8.
Article
CAS
Google Scholar
Nagpal S. A structured model for Thiobacillus ferrooxidans growth on ferrous iron. Biotechnol Bioeng. 1997;53(3):310–9.
Article
CAS
PubMed
Google Scholar
Giaveno A, Donati E. Bioleaching of heazelwoodite by Thiobacillus spp. Process Biochem. 2001;36(10):955–62.
Article
CAS
Google Scholar
Kawabe Y, Inoue C, Suto K, Chida T. Inhibitory effect of high concentrations of ferric ions on the activity of Acidithiobacillus ferrooxidans. J Biosci Bioeng. 2003;96(4):375–9.
Article
CAS
PubMed
Google Scholar
Abhilash Singh S, Mehta KD, Kumar V, Pandey BD, Pandey VM. Dissolution of uranium from silicate-apatite ore by Acidithiobacillus ferrooxidans. Hydrometallurgy. 2009;95(1–2):70–5.
Article
Google Scholar
Sasaki K, Koichiro T, Tsuyoshi H. Effects of initial Fe2+ concentration and pulp density on the bioleaching of Cu from enargite by Acidianus brierley. Hydrometallurgy. 2011;109(1):153–60.
Article
CAS
Google Scholar
Bayat O, Sever E, Bayat B, Arslan V, Poole C. Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Appl Biochem Biotechnol. 2009;152(1):117–26.
Article
CAS
PubMed
Google Scholar
Lázaro Isabel. Electrochemical study of orpiment (As2S3) and realgar (As2S2) in acidic medium. ECS J Solid State Sci Technol. 1997;144(12):4128–32.
Google Scholar
Tributsch H. Direct versus indirect bioleaching. Hydrometallurgy. 2001;59(2):177–85.
Article
CAS
Google Scholar
Chen P, Yan L, Wang Q, Li Y, Li H. Surface alteration of realgar (As(4)S(4)) by Acidithiobacillus ferrooxidans. Int J Microbiol. 2012;15(1):9–15.
CAS
Google Scholar
Zhang GJ, Fang ZH. The contribution of direct and indirect actions in bioleaching of pentlandite. Hydrometallurgy. 2005;80(1–2):59–66.
Article
CAS
Google Scholar
Yan L, Yin H, Zhang S, Leng F, Nan W, Li H. Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3. J Hazard Mater. 2010;178(1–3):209–17.
Article
CAS
PubMed
Google Scholar
Makita M, Esperon M, Pereyra B, Lopez A, Orrantia E. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. BMC Biotechnol. 2004;4:22.
Article
PubMed
PubMed Central
Google Scholar
Hansford GS, Vargas T. Chemical and electrochemical basis of bioleaching processes. Hydrometallurgy. 2001;59(2):135–45.
Article
CAS
Google Scholar
Bosecker K. Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev. 1997;20(3–4):591–604.
Article
CAS
Google Scholar
Yang XJ, Zhang XX, Fan YL, Li HY. The leaching of pentlandite by Acidithiobacillus ferrooxidans with a biological–chemical process. Biochem Eng J. 2008;42(2):166–71.
Article
CAS
Google Scholar
Fowler TA, Crundwell FK. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions. Microbiol Appl Environ Microbiol. 1999;65(12):5285–92.
CAS
PubMed
Google Scholar
Liu D, Zhi D, Zhou T, Yu Q, Wan F, Bai Y, Li H. Realgar bioleaching solution is a less toxic arsenic agent in suppressing the Ras/MAPK pathway in Caenorhabditis elegans. Environ Toxicol Pharmacol. 2013;35(2):292–9.
Article
CAS
PubMed
Google Scholar
Zhang X, Xie QJ, Wang X, Wang B, Li HY. Biological extraction of realgar by Acidithiobacillus ferrooxidans and its in vitro and in vivo antitumor activities. Pharm Biol. 2010;48(1):40–477.
Article
PubMed
Google Scholar
Xie QJ, Cao XL, Bai L, Wu ZR, Ma YP, Li HY. Anti-tumor effects and apoptosis induction by realgar bioleaching solution in sarcoma-180 cells in vitro and transplanted tumors in mice in vivo. Asian Pac J Cancer Prev. 2014;15(6):2883–8.
Article
PubMed
Google Scholar
Kayne PS, Sternberg PW. Ras pathways in Caenorhabditis elegans. Curr Opin Genet Dev. 1995;5(1):38–43.
Article
CAS
PubMed
Google Scholar
Lee MH, Ohmachi M, Arur S, Nayak S, Francis R, Church D, Lambie E, Schedl T. Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics. 2007;177(4):2039–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sternberg PW, Han M. Genetics of RAS signaling in C. elegans. Trends Genet. 1998;14(11):466–72.
Article
CAS
PubMed
Google Scholar
Wang X, Zhang X, Xu Z, Wang Z, Yue X, Li H. Reversal effect of arsenic sensitivity in human leukemia cell line K562 and K562/ADM using realgar transforming solution. Biol Pharm Bull. 2013;36(4):641–8.
Article
PubMed
Google Scholar
Carbrey JM, Song L, Zhou Y, Yoshinaga M, Rojek A, Wang Y, Liu Y, Lujan HL, DiCarlo SE, Nielsen S, Rosen BP, Agre P, Mukhopadhyay R. Reduced arsenic clearance and increased toxicity in aquaglyceroporin-9-null mice. Proc Natl Acad Sci USA. 2009;106(37):15956–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Carbrey JM, Agre P, Rosen BP. Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun. 2004;316(4):1178–85.
Article
CAS
PubMed
Google Scholar
Zhi de J, Feng N, Liu DL, Hou RL, Wang MZ, Ding XX, Li HY. Realgar bioleaching solution suppress ras excessive activation by increasing ROS in Caenorhabditis elegans. Arch Pharm Res. 2014;37(3):390–8.
Article
PubMed
Google Scholar
Weinberg F, Chandel NS. Mitochondrial metabolism and cancer. Ann NY Acad Sci. 2009;1177:66–73.
Article
CAS
PubMed
Google Scholar
Dolado I, Nebreda AR. AKT and oxidative stress team up to kill cancer cells. Cancer Cell. 2008;14(6):427–9.
Article
CAS
PubMed
Google Scholar
Song P, Chen P, Wang D, Wu Z, Gao Q, Wang A, Zhu R, Wang Y, Wang X, Zhao L, Duan Z, Zhu S, Cui P, Li Y, Li H. Realgar transforming solution displays anticancer potential against human hepatocellular carcinoma HepG2 cells by inducing ROS. Int J Oncol. 2017;50(2):660–70.
PubMed
Google Scholar
Ernst E. Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol Sci. 2002;23(3):136–9.
Article
CAS
PubMed
Google Scholar
Ernst E. Heavy metals in traditional Chinese medicines: a systematic review. Clin Pharmacol Ther. 2001;70(6):497–504.
Article
CAS
PubMed
Google Scholar
Kong DX, Li XJ, Zhang HY. Where is the hope for drug discovery? Let history tell the future. Drug Discov Today. 2009;14(3–4):115–9.
Article
PubMed
Google Scholar
Yan JW, Miao JW, He HY, Shi JZ, Wu Q, Liu J, Shi JS. Comparative study of hepatotoxicity and nephrotoxicity produced by Wan-Sheng-Hua-Feng Dan, relagar and cinnabar. Chinese J Pharmacol Toxicol. 2011;25:380–5.
Google Scholar
Tournel G, Houssaye C, Humbert L, Dhorne C, Gnemmi V, Becart-Robert A, Nisse P, Hedouin V, Gosset D, Lhermitte M. Acute arsenic poisoning: clinical, toxicological, histopathological, and forensic features. J Forensic Sci. 2011;56(Suppl 1):S275–9.
Article
PubMed
Google Scholar
Yu-Hong Du, Paul Ho. Arsenic compounds induce cytotoxicity and apoptosis in cisplatin-sensitive and -resistant gynecological cancer cell lines. Cancer Chemotherapy and Pharmacology. 2001;47(6):481–90
Article
Google Scholar