Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.
Article
CAS
PubMed
Google Scholar
Kin Tekce B, Tekce H, Aktas G, Sit M. Evaluation of the urinary kidney injury molecule-1 levels in patients with diabetic nephropathy. Clin Invest Med. 2014;37(6):E377–83.
PubMed
Google Scholar
Kirk KL, Jacobson KA. History of Chemistry in the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Bull Hist Chem. 2014;39(2):150–65.
CAS
PubMed
PubMed Central
Google Scholar
Quiroga B, Arroyo D, de Arriba G. Present and future in the treatment of diabetic kidney disease. J Diabetes Res. 2015;2015:801348.
Article
PubMed
PubMed Central
Google Scholar
Yoon JJ, Lee YJ, Kang DG, Lee HS. Protective role of oryeongsan against renal inflammation and glomerulosclerosis in db/db mice. Am J Chin Med. 2014;42(6):1431–52.
Article
PubMed
Google Scholar
Kanasaki K, Taduri G, Koya D. Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne). 2013;4:7.
Google Scholar
Tesch GH, Lim AK. Recent insights into diabetic renal injury from the db/db mouse model of type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2011;300(2):F301–10.
Article
CAS
PubMed
Google Scholar
Li R, Chung AC, Yu X, Lan HY. miRNAs in diabetic kidney disease. Int J Endocrinol. 2014;2014:593956.
PubMed
PubMed Central
Google Scholar
Guay C, Regazzi R. Circulating miRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9(9):513–21.
Article
CAS
PubMed
Google Scholar
Dehwah MA, Xu A, Huang Q. MiRNAs and type 2 diabetes/obesity. J Genet Genom. 2012;39(1):11–8.
Article
CAS
Google Scholar
Zhang Y, Xiao HQ, Wang Y, Yang ZS, Dai LJ, Xu YC. Differential expression and therapeutic efficacy of miRNA-346 in diabetic nephropathy mice. Exp Ther Med. 2015;10(1):106–12.
PubMed
PubMed Central
Google Scholar
Wu H, Kong L, Zhou S, Cui W, Xu F, Luo M, Li X, Tan Y, Miao L. The role of miRNAs in diabetic nephropathy. J Diabetes Res. 2014;2014:920134.
PubMed
PubMed Central
Google Scholar
Kato M, Natarajan R. MiRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann NY Acad Sci. 2015;1353:72.
Article
PubMed
PubMed Central
Google Scholar
Shi SH, Zhao X, Liu B, Li H, Liu AJ, Wu B, Bi KS, Jia Y. The effects of sesquiterpenes-rich extract of Alpinia oxyphylla Miq. on amyloid-beta-induced cognitive impairment and neuronal abnormalities in the cortex and hippocampus of mice. Oxid Med Cell Longev. 2014;2014:451802.
Article
PubMed
PubMed Central
Google Scholar
Wang S, Zhao Y, Zhang J, Huang X, Wang Y, Xu X, Zheng B, Zhou X, Tian H, Liu L, et al. Antidiarrheal effect of Alpinia oxyphylla Miq. (Zingiberaceae) in experimental mice and its possible mechanism of action. J Ethnopharmacol. 2015;168:182–90.
Article
PubMed
Google Scholar
Zhang Q, Cui C, Chen CQ, Hu XL, Liu YH, Fan YH, Meng WH, Zhao QC. Anti-proliferative and pro-apoptotic activities of Alpinia oxyphylla on HepG2 cells through ROS-mediated signaling pathway. J Ethnopharmacol. 2015;169:99–108.
Article
PubMed
Google Scholar
Chun KS, Park KK, Lee J, Kang M, Surh YJ. Inhibition of mouse skin tumor promotion by anti-inflammatory diarylheptanoids derived from Alpinia oxyphylla Miquel (Zingiberaceae). Oncol Res. 2002;13(1):37–45.
CAS
PubMed
Google Scholar
Wang H, Liu TQ, Guan S, Zhu YX, Cui ZF. Protocatechuic acid from Alpinia oxyphylla promotes migration of human adipose tissue-derived stromal cells in vitro. Eur J Pharmacol. 2008;599(1–3):24–31.
Article
CAS
PubMed
Google Scholar
Wang H, Liu TQ, Zhu YX, Guan S, Ma XH, Cui ZF. Effect of protocatechuic acid from Alpinia oxyphylla on proliferation of human adipose tissue-derived stromal cells in vitro. Mol Cell Biochem. 2009;330(1–2):47–53.
Article
CAS
PubMed
Google Scholar
Xie Y, Xiao M, Li D, Liu H, Yun F, Wei Y, Sang S, Du G. Anti-diabetic effect of Alpinia oxyphylla extract on 57BL/KsJ db-/db- mice. Exp Ther Med. 2017;13(4):1321–8. doi:10.3892/etm.2017.4152.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2.
Article
Google Scholar
Friedländer MR, Mackowiak SD, Li N, et al. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52.
Article
PubMed
Google Scholar
Eisen MB, Spellman PT, Brown PO, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci. 1998;95(25):14863–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dweep H, Gretz N. miRWalk2. 0: a comprehensive atlas of miRNA-target interactions. Nat Methods. 2015;12(8):697.
Article
CAS
PubMed
Google Scholar
Salas-Perez F, Codner E, Valencia E, Pizarro C, Carrasco E, Perez-Bravo F. MiRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology. 2013;218(5):733–7.
Article
CAS
PubMed
Google Scholar
Nielsen LB, Wang C, Sørensen K, Bang-Berthelsen CH, Hansen L, Andersen ML, Hougaard P, Juul A, Zhang CY, Pociot F, Mortensen HB. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res. 2012;2012:896362. doi:10.1155/2012/896362.
PubMed
PubMed Central
Google Scholar
Argyropoulos C, Wang K, Bernardo J, Ellis D, Orchard T, Galas D, Johnson JP. Urinary miRNA profiling predicts the development of microalbuminuria in patients with type 1 diabetes. J Clin Med. 2015;4(7):1498–517.
Article
PubMed
PubMed Central
Google Scholar
Fang Y, Yu X, Liu Y, Kriegel AJ, Heng Y, Xu X, Liang M, Ding X. miR-29c is downregulated in renal interstitial fibrosis in humans and rats and restored by HIF-α activation. Am J Physiol Ren Physiol. 2013;304(10):F1274–82.
Article
CAS
Google Scholar
Long J, Wang Y, Wang W, Chang BH, Danesh FR. miRNA-29c is a signature miRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem. 2011;286(13):11837–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, He S, Guo S, Xie W, Xin R, Yu H, Yang F, Qiu J, Zhang D, Zhou S. Down-regulation of miR-34a alleviates mesangial proliferation in vitro and glomerular hypertrophy in early diabetic nephropathy mice by targeting GAS1. J Diabetes Complications. 2014;28(3):259–64.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhao YP, Gao YF, Fan ZM, Liu MY, Cai XY, Xia ZK, Gao CL. Silencing miR-106b improves palmitic acid-induced mitochondrial dysfunction and insulin resistance in skeletal myocytes. Mol Med Rep. 2015;11(5):3834–41.
CAS
PubMed
Google Scholar
Ho J, Pandey P, Schatton T, Sims-Lucas S, Khalid M, Frank MH, Hartwig S, Kreidberg JA. The pro-apoptotic protein Bim is a miRNA target in kidney progenitors. J Am Soc Nephrol. 2011;22(6):1053–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nesca V, Guay C, Jacovetti C, Menoud V, Peyot M-L, Laybutt DR, Prentki M, Regazzi R. Identification of particular groups of miRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia. 2013;56(10):2203–12.
Article
CAS
PubMed
Google Scholar
Zhou X, Liu W, Gu M, Zhou H, Zhang G. Helicobacter pylori infection causes hepatic insulin resistance by the c-Jun/miR-203/SOCS3 signaling pathway. J Gastroenterol. 2015;50(10):1027–40.
Article
CAS
PubMed
Google Scholar
Kornfeld J-W, Baitzel C, Könner AC, Nicholls HT, Vogt MC, Herrmanns K, Scheja L, Haumaitre C, Wolf AM, Knippschild U. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature. 2013;494(7435):111–5.
Article
CAS
PubMed
Google Scholar
You L, Gu W, Chen L, Pan L, Chen J, Peng Y. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 2014;7(10):7249–61.
CAS
PubMed
PubMed Central
Google Scholar
Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q. Profiling maternal plasma miRNA expression in early pregnancy to predict gestational diabetes mellitus. Int J Gynecol Obstet. 2015;130(1):49–53.
Article
CAS
Google Scholar
Kaur K, Vig S, Srivastava R, Mishra A, Singh VP, Srivastava AK, Datta M. Elevated Hepatic miR-22-3p expression impairs gluconeogenesis by silencing the Wnt-responsive transcription factor Tcf7. Diabetes. 2015;64(11):3659–69.
Article
CAS
PubMed
Google Scholar
Kaur K, Pandey AK, Srivastava S, Srivastava AK, Datta M. Comprehensive miRNome and in silico analyses identify the Wnt signaling pathway to be altered in the diabetic liver. Mol BioSyst. 2011;7(12):3234–44.
Article
CAS
PubMed
Google Scholar
Zhuang G, Meng C, Guo X, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation. 2012;125(23):2892–903.
Article
CAS
PubMed
Google Scholar
Esguerra JLS, Bolmeson C, Cilio CM, Eliasson L. Differential glucose-regulation of miRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS ONE. 2011;6(4):e18613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu L, Chen L, Shi C-M, Xu G-F, Xu L-L, Zhu L-L, Guo X-R, Ni Y, Cui Y, Ji C. MiR-335, an adipogenesis-related miRNA, is involved in adipose tissue inflammation. Cell Biochem Biophys. 2014;68(2):283–90.
Article
CAS
PubMed
Google Scholar
Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89(3):1025–78.
Article
CAS
PubMed
Google Scholar
Xin C, Liu J, Zhang J, et al. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int J Obes (Lond). 2016;40(3):443–51.
Article
CAS
Google Scholar
Zhao H, Przybylska M, Wu I-H, Zhang J, Siegel C, Komarnitsky S, Yew NS, Cheng SH. Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes. 2007;56(5):1210–8.
Article
CAS
PubMed
Google Scholar
Subathra M, Korrapati M, Howell LA, Arthur JM, Shayman JA, Schnellmann RG, Siskind LJ. Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol Ren Physiol. 2015;309(3):F204–15.
Article
CAS
Google Scholar
Marrero MB, Banes-Berceli AK, Stern DM, Eaton DC. Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am J Physiol Ren Physiol. 2006;290(4):F762–8.
Article
CAS
Google Scholar