Su YQ, Sugiura K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, Matzuk MM, Eppig JJ: Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 2008, 135: 111-121.
Article
CAS
PubMed
Google Scholar
Kidder GM, Vanderhyden BC: Bidirectional communication between oocytes and follicle cells: ensuring oocyte developmental competence. Can J Physiol Pharmacol 2010, 88(4):399-413. 10.1139/Y10-009
Article
PubMed Central
CAS
PubMed
Google Scholar
Matzuk M, Burns KH, Viveiros MM, Eppig JJ: Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 2002, 296: 2178-2180. 10.1126/science.1071965
Article
CAS
PubMed
Google Scholar
Knight PG, Glister C: TGF-beta superfamily members and ovarian follicle development. Reproduction 2006, 132: 191-206. 10.1530/rep.1.01074
Article
CAS
PubMed
Google Scholar
Otsuka F, McTavish KJ, Shimasaki S: Integral role of GDF-9 and BMP-15 in ovarian function. Mol Reprod Dev 2011, 78(1):9-21. 10.1002/mrd.21265
Article
PubMed Central
CAS
PubMed
Google Scholar
Vitt UA, Hayashi M, Klein C, Hsueh AJ: Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles. Biol Reprod 2000, 62: 370-377. 10.1095/biolreprod62.2.370
Article
CAS
PubMed
Google Scholar
Otsuka F, Shimasaki S: A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes. Endocrinology 2002, 143(12):4938-4941. 10.1210/en.2002-220929
Article
CAS
PubMed
Google Scholar
Spicer LJ, Aad PY, Allen D, Mazerbourg S, Hsueh AJ: Growth differentiation factor-9 has divergent effects on proliferation and steroidogenesis of bovine granulosa cells. J Endocrinol 2006, 189(2):329-339. 10.1677/joe.1.06503
Article
CAS
PubMed
Google Scholar
Sugiura K, Su YQ, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ: Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15. Mol Endocrinol 2010, 24(12):2303-2314. 10.1210/me.2010-0260
Article
PubMed Central
CAS
PubMed
Google Scholar
Orisaka M, Orisaka S, Jiang JY, Craig J, Wang Y, Kotsuji F, Tsang BK: Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol Endocrinol 2006, 20(10):2456-2468. 10.1210/me.2005-0357
Article
CAS
PubMed
Google Scholar
Otsuka F, Yamamoto S, Erickson GF, Shimasaki S: Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem 2001, 276(14):11387-11392. 10.1074/jbc.M010043200
Article
CAS
PubMed
Google Scholar
Yoshino O, McMahon HE, Sharma S, Shimasaki S: A unique preovulatory expression pattern plays a key role in the physiological functions of BMP-15 in the mouse. Proc Natl Acad Sci U S A 2006, 103(28):10678-10683. 10.1073/pnas.0600507103
Article
PubMed Central
CAS
PubMed
Google Scholar
Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB: Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci 2005, 118(Pt 22):5257-5268.
Article
CAS
PubMed
Google Scholar
Clelland E, Kohli G, Campbell RK, Sharma S, Shimasaki S, Peng C: Bone morphogenetic protein-15 in the zebrafish ovary: complementary deoxyribonucleic acid cloning, genomic organization, tissue distribution, and role in oocyte maturation. Endocrinology 2006, 147: 201-209. 10.1210/en.2005-1017
Article
CAS
PubMed
Google Scholar
Clelland ES, Tan Q, Balofsky A, Lacivita R, Peng C: Inhibition of premature oocyte maturation: a role for bone morphogenetic protein 15 in zebrafish ovarian follicles. Endocrinology 2007, 148: 5451-5458. 10.1210/en.2007-0674
Article
CAS
PubMed
Google Scholar
Liu L, Ge W: Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biol Reprod 2007, 76: 294-302. 10.1095/biolreprod.106.054668
Article
PubMed
Google Scholar
Liu Z, Chen A, Yang Z, Wei H, Leng X: Molecular characterization of growth differentiation factor 9 and its spatio-temporal expression pattern in gibel carp ( Carassius auratus gibelio ). Mol Biol Rep 2012, 39(4):3863-3870. 10.1007/s11033-011-1165-8
Article
CAS
PubMed
Google Scholar
Huang CX, Wei XL, Chen N, Zhang J, Chen LP, Wang WM, Li JY, Wang HL: Growth differentiation factor 9 of Megalobrama amblycephala : molecular characterization and expression analysis during the development of early embryos and growing ovaries. Fish Physiol Biochem 2014, 40(1):193-203. 10.1007/s10695-013-9836-0
Article
PubMed
Google Scholar
Lokman PM, Kazeto Y, Ozaki Y, Ijiri S, Tosaka R, Kohara M, Divers SL, Matsubara H, Moore LG, Adachi S: Effects of reproductive stage, GH, and 11-ketotestosterone on expression of growth differentiationfactor-9 in the ovary of the eel, Anguilla australis. Reproduction 2010, 139(1):71-83. 10.1530/REP-08-0454
Article
CAS
PubMed
Google Scholar
He Z, Wu Y, Xie J, Wang T, Zhang L, Zhang W: Growth differentiation factor 9 (Gdf9) was localized in the female as well as male germ cells in a protogynous hermaphroditic teleost fish, ricefield eel Monopterus albus . Gen Comp Endocrinol 2012, 178(2):355-362. 10.1016/j.ygcen.2012.06.016
Article
CAS
PubMed
Google Scholar
Halm S, Ibañez AJ, Tyler CR, Prat F: Molecular characterization of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass. Mol Cell Endocrinol 2008, 291: 95-103. 10.1016/j.mce.2008.03.002
Article
CAS
PubMed
Google Scholar
Lankford SE, Weber GM: Temporal mRNA expression of transforming growth factor-beta superfamily members and inhibitors in the developing rainbow trout ovary. Gen Comp Endocr 2010, 166: 250-258. 10.1016/j.ygcen.2009.09.007
Article
CAS
PubMed
Google Scholar
Peng C, Clelland E, Tan Q: Potential role of bone morphogenetic protein-15 in zebrafish follicle development and oocyte maturation. Comp Biochem Phys A 2009, 153: 83-87. 10.1016/j.cbpa.2008.09.034
Article
Google Scholar
Sendai Y, Itoh T, Yamashita S, Hoshi H: Molecular cloning of a cDNA encoding a bovine growth differentiation factor-9 (GDF-9) and expression of GDF-9 in bovine ovarian oocytes and in vitro-produced embryos. Cloning 2001, 3(1):3-10. 10.1089/152045501300189286
Article
CAS
PubMed
Google Scholar
Alizadeh Z, Kageyama S, Aoki F: Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol Reprod Dev 2005, 72(3):281-290. 10.1002/mrd.20340
Article
CAS
PubMed
Google Scholar
Yeo CX, Gilchrist RB, Thompson JG, Lane M: Exogenous growth differentiation factor 9 in oocyte maturation media enhances subsequent embryo development and fetal viability in mice. Hum Reprod 2008, 23: 67-73.
Article
CAS
PubMed
Google Scholar
Wu YT, Tang L, Cai J, Lu XE, Xu J, Zhu XM, Luo Q, Huang HF: High bone morphogenetic protein-15 level in follicular fluid is associated with high quality oocyte and subsequent embryonic development. Hum Reprod 2007, 22: 1526-1531. 10.1093/humrep/dem029
Article
CAS
PubMed
Google Scholar
McGrath SA, Esquela AF, Lee SJ: Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 1995, 9: 131-136.
CAS
PubMed
Google Scholar
Di Pasquale E, Brivanlou AH: Bone Morphogenetic Protein 15 (BMP15) acts as a BMP and Wnt inhibitor during early embryogenesis. J Biol Chem 2009, 284: 26127-26136. 10.1074/jbc.M109.036608
Article
PubMed Central
CAS
PubMed
Google Scholar
Moran D, Smith C, Gara B, Poortenaar C: Reproductive behavior and early development in yellowtail kingfish ( Seriola lalandi Valenciennes 1833). Aquaculture 2007, 262: 95-104. 10.1016/j.aquaculture.2006.10.005
Article
Google Scholar
Poortenaar CW, Hooker SH, Sharp N: Assessment of yellowtail kingfish ( Seriola lalandi lalandi) reproductive physiology, as a basis for aquaculture development. Aquaculture 2001, 201: 271-286. 10.1016/S0044-8486(01)00549-X
Article
Google Scholar
Carnevali O, Mosconi G, Cambi A, Ridolfi S, Zanuy S, Polzonetti-Magni A: Changes of lysosomal enzyme activities in sea bass ( Dicentrarchus labrax ) eggs and developing embryos. Aquaculture 2001, 202: 249-256. 10.1016/S0044-8486(01)00775-X
Article
CAS
Google Scholar
Lewis LM, Lall SP: Development of the axial skeleton and skeletal abnormalities of Atlantic halibut ( Hippoglossus hippoglossus ) from first feeding through metamorphosis. Aquaculture 2006, 257: 124-135. 10.1016/j.aquaculture.2006.02.067
Article
Google Scholar
Sæle O, Solbakken JS, Watanabe K, Hamre K, Power D, Pittman K: Staging of Atlantic halibut ( Hippoglossus hippoglossus ) from first feeding through metamorphosis, including cranial ossification independent of eye migration. Aquaculture 2004, 239: 445-465. 10.1016/j.aquaculture.2004.05.025
Article
Google Scholar
Lein I, Tveite S, Gjerde B, Holmefjord I: Effects of salinity on yolk sac larvae of Atlantic halibut ( Hippoglossus hippoglossus ). Aquaculture 1997, 156: 291-303. 10.1016/S0044-8486(97)00135-X
Article
CAS
Google Scholar
Chen AQ, Liu ZW, Yang ZG, Leng XJ: Characterization of bmp15 and its regulation by human chorionic gonadotropin in the follicle of gibelcarp ( Carassius auratus gibelio ). Comp Biochem Physiol B 2012, 163(1):121-128. 10.1016/j.cbpb.2012.05.009
Article
CAS
PubMed
Google Scholar
García-López Á, Sánchez-Amaya MI, Halm S, Astola A, Prat F: Bone morphogenetic protein 15 and growth differentiation factor 9 expression in the ovary of European sea bass ( Dicentrarchus labrax ): cellular localization, developmental profiles, and response to unilateral ovariectomy. Gen Comp Endocrinol 2011, 174(3):326-334. 10.1016/j.ygcen.2011.09.011
Article
PubMed
Google Scholar
Brevini TA, Cillo F, Antonini S, Tosetti V, Gandolfi F: Temporal and spatial control of gene expression in early embryos of farm animals. Reprod Fertil Dev 2007, 19(1):35-42. 10.1071/RD06119
Article
CAS
PubMed
Google Scholar
Rankin CT, Bunton T, Lawler AM, Lee SJ: Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat Genet 2000, 24(3):262-265. 10.1038/73472
Article
CAS
PubMed
Google Scholar
Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW: Mechanisms of GDF-5 action during skeletal development. Development 1999, 126(6):1305-1315.
CAS
PubMed
Google Scholar
Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A: Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 2004, 313: 856-862. 10.1016/j.bbrc.2003.11.177
Article
CAS
PubMed
Google Scholar
Bustin S: Quantification of mRNA using real-time reverse transcription (RT-qPCR): trends and problems. J Mol Endocrinol 2002, 29: 23-29. 10.1677/jme.0.0290023
Article
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3(7):research0034.1-research0034.11.
Article
Google Scholar