Amoozegar MA, Ashengroph M, Malekzadeh F, et al. Isolation and initial characterization of the tellurite reducing moderately halophilic bacterium, Salinicoccus sp. strain QW6. Microbiol Res. 2008;163(4):456–65. https://doi.org/10.1016/j.micres.2006.07.010.
Article
CAS
PubMed
Google Scholar
Anaganti N, Basu B, Gupta A, et al. Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity in Deinococcus radiodurans. Proteomics. 2015;15(1):89–97. https://doi.org/10.1002/pmic.201400113.
Article
CAS
PubMed
Google Scholar
Apontoweil P, Berends W. Glutathione biosynthesis in Escherichia coli K 12 properties of the enzymes and regulation. Biochem Biophys Acta. 1975;399(1):1–9. https://doi.org/10.1016/0304-4165(75)90205-6.
Article
CAS
PubMed
Google Scholar
Arenas-Salinas M, Vargas-Pérez JI, Morales W, et al. Flavoprotein-mediated tellurite reduction: structural basis and applications to the synthesis of tellurium-containing nanostructures. Front Microbiol. 2016;7:1–14. https://doi.org/10.3389/fmicb.2016.01160.
Article
Google Scholar
Åslund F, Ehn B, Miranda-Vizuete A, et al. Two additional glutaredoxins exist in Escherichia coli: Glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant. Proc Natl Acad Sci USA. 1994;91(21):9813–7. https://doi.org/10.1073/pnas.91.21.9813.
Article
PubMed
PubMed Central
Google Scholar
Avazeri C, Turner RJ, Pommier J, et al. Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology. 1997;143(4):1181–9. https://doi.org/10.1099/00221287-143-4-1181.
Article
CAS
PubMed
Google Scholar
Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2(2006):0008. https://doi.org/10.1038/msb4100050.
Article
CAS
PubMed
Google Scholar
Bennett BD, Kimball EH, Gao M, et al. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol. 2009;5(8):593–9. https://doi.org/10.1038/nchembio.186.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54. https://doi.org/10.1016/0003-2697(76)90527-3.
Article
CAS
PubMed
Google Scholar
Calderón IL, Arenas FA, Pérez JM, et al. Catalases are NAD(P)H-dependent tellurite reductases. PLoS ONE. 2006;1(1): e70. https://doi.org/10.1371/journal.pone.0000070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmel-Harel O, Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol. 2000;54(1):439–61. https://doi.org/10.1146/annurev.micro.54.1.439.
Article
CAS
PubMed
Google Scholar
Castro ME, Molina R, Díaz W, et al. The dihydrolipoamide dehydrogenase of Aeromonas caviae ST exhibits NADH-dependent tellurite reductase activity. Biochem Biophys Res Commun. 2008;375(1):91–4. https://doi.org/10.1016/j.bbrc.2008.07.119.
Article
CAS
PubMed
Google Scholar
Chasteen TG, Fuentes DE, Tantaleán JC, et al. Tellurite: History, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol Rev. 2009;33(4):820–32. https://doi.org/10.1111/j.1574-6976.2009.00177.x.
Article
CAS
PubMed
Google Scholar
Chesney JA, Eaton JW, Mahoney JR. Bacterial glutathione: a sacrificial defense against chlorine compounds. J Bacteriol. 1996;178(7):2131–5. https://doi.org/10.1128/jb.178.7.2131-2135.1996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiong M, Barra R, González E, Vásquez C. Resistance of Thermus spp. to potassium tellurite. Appl Environ Microbiol. 1988;54(2):610–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Combs GF, Jr Garbisu C, Yee BC, et al. Bioavailability of selenium accumulated by selenite-reducing bacteria. Biol Trace Elem Res. 1996;52(3):209–25. https://doi.org/10.1007/BF02789163.
Article
CAS
PubMed
Google Scholar
Contreras N, Vásquez CC. Tellurite-induced carbonylation of the Escherichia coli pyruvate dehydrogenase multienzyme complex. Arch Microbiol. 2010;192(11):969–73. https://doi.org/10.1007/s00203-010-0624-2.
Article
CAS
Google Scholar
Cooper PD, Few AV. Uptake of potassium tellurite by a sensitive strain of Escherichia coli. Biochem J. 1952;51(4):552–7. https://doi.org/10.1042/bj0510552.
Article
CAS
PubMed
PubMed Central
Google Scholar
Díaz-Vásquez WA, Abarca-Lagunas MJ, Cornejo FA, et al. Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions. Arch Biochem Biophys. 2015;566:67–75. https://doi.org/10.1016/j.abb.2014.10.011.
Article
CAS
PubMed
Google Scholar
Harrison JJ, Ceri H, Stremick CA, et al. Biofilm susceptibility to metal toxicity. Environ Microbiol. 2004;6(12):1220–7. https://doi.org/10.1111/j.1462-2920.2004.00656.x.
Article
CAS
PubMed
Google Scholar
Imlay James A. Pathways of oxidative damage. Annu Rev Microbiol. 2003;57(1):395–418. https://doi.org/10.1146/annurev.micro.57.030502.090938.
Article
CAS
PubMed
Google Scholar
Klonowska A, Heulin T, Vermeglio A. Selenite and tellurite reduction by Shewanella oneidensis. Appl Environ Microbiol. 2005;71(9):5607–9. https://doi.org/10.1128/AEM.71.9.5607-5609.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koseki S, Nonaka J. Alternative approach to modeling bacterial lag time, using logistic regression as a function of time, temperature, pH, and sodium chloride concentration. Appl Environ Microbiol. 2012;78(17):6103–12. https://doi.org/10.1128/AEM.01245-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leonardo MR, Dailly Y, Clark DP. Role of NAD+ in regulating the adhE gene of Escherichia coli. J Bacteriol. 1996;178(20):6013–8. https://doi.org/10.1128/jb.178.20.6013-6018.1996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maltman C, Yurkov V. Extreme environments and high-level bacterial tellurite resistance. Microorganisms. 2019;7(12):601. https://doi.org/10.3390/microorganisms7120601.
Article
CAS
PubMed Central
Google Scholar
Moore LJ, Kiley PJ. Characterization of the dimerization domain in the FNR transcription factor. J Biol Chem. 2001;276(49):45744–50. https://doi.org/10.1074/jbc.M106569200.
Article
CAS
PubMed
Google Scholar
Moore MD, Kaplan S. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol. 1992;174(5):1505–14. https://doi.org/10.1128/jb.174.5.1505-1514.1992.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales EH, Pinto CA, Luraschi R, et al. Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nat Commun. 2017;11(8):15320. https://doi.org/10.1038/ncomms15320.
Article
Google Scholar
Nancharaiah YV, Lens PN. Ecology and biotechnology of selenium-respiring bacteria. Microbiol Mol Biol Rev. 2015;79(1):61–80. https://doi.org/10.1128/MMBR.00037-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Narasingarao P, Häggblom MM. Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Appl Environ Microbiol. 2007;73(11):3519–27. https://doi.org/10.1128/AEM.02737-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Painter EP. The chemistry and toxicity of selenium compounds, with special reference to the selenium problem. Chem Rev. 1941;28(2):179–213. https://doi.org/10.1021/cr60090a001.
Article
CAS
Google Scholar
Pérez JM, Calderón IL, Arenas FA, et al. Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS ONE. 2007;2(2): e211. https://doi.org/10.1371/journal.pone.0000211.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pradenas GA, Díaz-Vásquez WA, Pérez-Donoso JM, et al. Monounsaturated fatty acids are substrates for aldehyde generation in tellurite-exposed Escherichia coli. BioMed Res Intern. 2013;2013: 563756. https://doi.org/10.1155/2013/563756.
Article
CAS
Google Scholar
Pradenas GA, Paillavil BA, Reyes-Cerpa S, et al. Reduction of the monounsaturated fatty acid content of Escherichia coli results in increased resistance to oxidative damage. Microbiology (Reading, England). 2012;158(Pt5):1279–83. https://doi.org/10.1099/mic.0.056903-0.
Article
CAS
Google Scholar
Presentato A, Turner RJ, Vásquez CC, et al. Tellurite-dependent blackening of bacteria emerges from the dark ages. Environ Chem. 2019;16(4):266. https://doi.org/10.1071/EN18238.
Article
CAS
Google Scholar
Prinz WA, Åslund F, Holmgren A, et al. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem. 1997;272(25):15661–7. https://doi.org/10.1074/jbc.272.25.15661.
Article
CAS
PubMed
Google Scholar
Pugin B, Cornejo FA, Muñoz-Díaz P, et al. Glutathione reductase-mediated synthesis of tellurium-containing nanostructures exhibiting antibacterial properties. Appl Environ Microbiol. 2014;80(22):7061–70. https://doi.org/10.1128/AEM.02207-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reeves SA, Parsonage D, Nelson KJ, et al. Kinetic and thermodynamic features reveal that Escherichia coli BCP is an unusually versatile peroxiredoxin. Biochemistry. 2011;50(41):8970–81. https://doi.org/10.1021/bi200935d.
Article
CAS
PubMed
Google Scholar
Rigobello MP, Folda A, Citta A, et al. Interaction of selenite and tellurite with thiol-dependent redox enzymes: kinetics and mitochondrial implications. Free Radic Biol Med. 2011;50(11):1620–9. https://doi.org/10.1016/j.freeradbiomed.2011.03.006.
Article
CAS
PubMed
Google Scholar
Sabaty M, Avazeri C, Pignol D, et al. Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microbiol. 2001;67(11):5122–6. https://doi.org/10.1128/AEM.67.11.5122-5126.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sandoval JM, Arenas FA, Vásquez CC. Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress. PLoS ONE. 2011;6(9): e25573. https://doi.org/10.1371/journal.pone.0025573.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smirnova GV, Oktyabrsky ON. Glutathione in bacteria. Biochemistry (Mosc). 2005;70(11):1199–211. https://doi.org/10.1007/s10541-005-0248-3.
Article
CAS
Google Scholar
Spaans SK, Weusthuis RA, van der Oost J, et al. NADPH-generating systems in bacteria and archaea. Front Microbiol. 2015;6:742. https://doi.org/10.3389/fmicb.2015.00742.
Article
PubMed
PubMed Central
Google Scholar
Summers AO, Jacoby GA. Plasmid-determined resistance to tellurium compounds. J Bacteriol. 1977;129(1):276–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor DE. Bacterial tellurite resistance. Trends Microbiol. 1999;7(3):111–5. https://doi.org/10.1016/s0966-842x(99)01454-7.
Article
CAS
PubMed
Google Scholar
Tucker FL, Thomas JW, Appleman MD, et al. Complete reduction of tellurite to pure tellurium metal by microorganisms. J Bacteriol. 1962;83(6):1313–4. https://doi.org/10.1128/jb.83.6.1313-1314.1962.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner RJ, Aharonowitz Y, Weiner JH, et al. Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol. 2001;47(1):33–40. https://doi.org/10.1139/cjm-47-1-33.
Article
CAS
PubMed
Google Scholar
Turner RJ, Weiner JH, Taylor DE. Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology. 1999;145(9):2549–57. https://doi.org/10.1099/00221287-145-9-2549.
Article
CAS
PubMed
Google Scholar
Valdivia-González M, Pérez-Donoso JM, Vásquez CC. Effect of tellurite-mediated oxidative stress on the Escherichia coli glycolytic pathway. Biometals. 2012;25(2):451–8. https://doi.org/10.1007/s10534-012-9518-x.
Article
CAS
PubMed
Google Scholar
Valdivia-González MA, Díaz-Vásquez WA, Ruiz-León D, et al. A comparative analysis of tellurite detoxification by members of the genus Shewanella. Arch Microbiol. 2018;200(2):267–73. https://doi.org/10.1007/s00203-017-1438-2.
Article
CAS
PubMed
Google Scholar
Vásquez CC, Saavedra CP, Loyola CA, et al. The product of the cysK gene of Bacillus stearothermophilus V mediates potassium tellurite resistance in Escherichia coli. Curr Microbiol. 2001;43(6):418–23. https://doi.org/10.1007/s002840010331.
Article
CAS
PubMed
Google Scholar
Workentine ML, Harrison JJ, Stenroos PU, et al. Pseudomonas fluorescens’ view of the periodic table. Environ Microbiol. 2008;10(1):238–50. https://doi.org/10.1111/j.1462-2920.2007.01448.x.
Article
CAS
PubMed
Google Scholar
Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal. 2008;10(2):179–206. https://doi.org/10.1089/ars.2007.1672.
Article
CAS
PubMed
Google Scholar
Yurkov V, Jappe J, Vermeglio A. Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol. 1996;62(11):4195–8. https://doi.org/10.1128/aem.62.11.4195-4198.1996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zannoni D, Borsetti F, Harrison JJ, et al. The bacterial response to the chalcogen metalloids Se and Te. Adv Microb Physiol. 2008;53:1–72. https://doi.org/10.1016/S0065-2911(07)53001-8.
Article
CAS
PubMed
Google Scholar
Zhao Y, Seefeldt T, Chen W, et al. Effects of glutathione reductase inhibition on cellular thiol redox state and related systems. Arch Biochem Biophys. 2009;485(1):56–62. https://doi.org/10.1016/j.abb.2009.03.001.
Article
CAS
PubMed
PubMed Central
Google Scholar