USGS U.S.Geological Survey, SUMMARIES, Mineral Commodity. Mineral Commodity Summaries; USGS Unnumbered Series. US Geological Survey: Reston, VA, 2021; 200. https://doi.org/10.3133/mcs2021
Huston R, Butler JN. Standard potential of the lithium electrode in aqueous solutions. J Phys Chem. 1968;72(12):4263–4. https://doi.org/10.1021/j100858a054.
Article
CAS
Google Scholar
Williams ML. CRC handbook of chemistry and physics. Occup Environ Med. 1996;3(7):504.
Article
Google Scholar
Meng F, McNeice J, Zadeh SS, Ghahreman A. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Mineral Process Extractive Metallurgy Rev. 2021;42(2):123–41. https://doi.org/10.1080/08827508.2019.1668387.
Article
CAS
Google Scholar
Pramanik BK, Asif MB, Roychand R, Shu L, Jegatheesan V, Bhuiyan M, Hai FI. Lithium recovery from salt-lake brine: Impact of competing cations, pretreatment and preconcentration. Chemosphere. 2020;260: 127623. https://doi.org/10.1016/j.chemosphere.2020.127623.
Article
CAS
PubMed
Google Scholar
Martin G, Rentsch L, Höck M, Bertau M. Lithium market research–global supply, future demand, and price development. Energy Storage Materials. 2017;6:171–9. https://doi.org/10.1016/j.ensm.2016.11.004.
Article
Google Scholar
Julien C, Mauger A, Vijh A, Zaghib K. Lithium batteries. In: Lithium Batteries. Cham: Springer; 2016. p. 29–68.
Zubi G, Dufo-López R, Carvalho M, Pasaoglu G. The lithium-ion battery: State of the art and future perspectives. Renew Sustain Energy Rev. 2018;89:292–308. https://doi.org/10.1016/j.rser.2018.03.002.
Article
Google Scholar
Speirs J, Contestabile, M. The future of lithium availability for electric vehicle batteries. In: Behaviour of lithium-ion batteries in electric vehicles. Springer, Cham, 2018. P. 35–57. https://doi.org/10.1016/j.rser.2014.04.018
Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1800561. https://doi.org/10.1002/adma.201800561.
Article
CAS
Google Scholar
Islam MS, Fisher CA. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev. 2014;43(1):185–204. https://doi.org/10.1039/C3CS60199D.
Article
CAS
PubMed
Google Scholar
Wu F, Lee JT, Zhao E, Zhang B, Yushin G. Graphene–Li2S–carbon nanocomposite for lithium–sulfur batteries. ACS Nano. 2016;10(1):1333–40. https://doi.org/10.1021/acsnano.5b06716.
Article
CAS
PubMed
Google Scholar
Li X, Wolden CA, Ban C, Yang Y. Facile synthesis of lithium sulfide nanocrystals for use in advanced rechargeable batteries. ACS Appl Mater. 2015;7(51):28444–51. https://doi.org/10.1021/acsami.5b09367.
Article
CAS
Google Scholar
Zhang K, Wang L, Hu Z, Cheng F, Chen J. Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries. Sci Rep. 2014;4(1):6467. https://doi.org/10.1038/srep06467.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Z, Liu Z, Dudney NJ, Liang C. Lithium superionic sulfide cathode for all-solid lithium–sulfur batteries. ACS Nano. 2013;7(3):2829–33. https://doi.org/10.1021/nn400391h.
Article
CAS
PubMed
Google Scholar
Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 2010;10(4):1486–91. https://doi.org/10.1021/nl100504q.
Article
CAS
PubMed
Google Scholar
Li S, Leng D, Li W, Qie L, Dong Z, Cheng Z, Fan Z. Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Materials. 2020;27:279–96. https://doi.org/10.1016/j.ensm.2020.02.010.
Article
Google Scholar
Fariq A, Khan T, Yasmin A. Microbial synthesis of nanoparticles and their potential applications in biomedicine. J Appl Biomed. 2017;15(4):241–8. https://doi.org/10.1016/j.jab.2017.03.004.
Article
Google Scholar
Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM. Extracellular microbial synthesis of biocompatible CdTe Quantum Dots. Acta Biomater. 2010;6(9):3534–41. https://doi.org/10.1016/j.actbio.2010.03.030.
Article
CAS
PubMed
Google Scholar
Bruna N, Collao B, Tello A, Caravantes P, Díaz-Silva N, Monrás JP, Órdenes-Aenishanslins N, Flores M, Espinoza-Gonzalez R, Bravo D, Pérez-Donoso JM. Synthesis of salt-stable fluorescent nanoparticles (Quantum Dots) by polyextremophile halophilic bacteria. Sci Rep. 2019;9(1):1953. https://doi.org/10.1038/s41598-018-38330-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong J, Song X, Gao Y, Gong S, Wang Y, Han J. Microbiological synthesis of zinc sulfide nanoparticles using Desulfovibrio desulfuricans. Inorganic Nano-Metal Chem. 2018;48(2):96–102. https://doi.org/10.1080/15533174.2016.1216451.
Article
CAS
Google Scholar
Rostami H, Khosravi F, Mohseni M, Rostami AA. Biosynthesis of Ag nanoparticles using isolated bacteria from contaminated sites and its application as an efficient catalyst for hydrazine electrooxidation. Int J Biol Macromol. 2018;107:343–8. https://doi.org/10.1016/j.ijbiomac.2017.08.179.
Article
CAS
PubMed
Google Scholar
Liu Y, Pei R, Huang Z, Xiao J, Yao A, Xu K, Zhan G. Green immobilization of CdS-Pt nanoparticles on recombinant Escherichia coli boosted by overexpressing cysteine desulfurase for photocatalysis application. Bioresour Technol Rep. 2021;16: 100823. https://doi.org/10.1016/j.biteb.2021.100823.
Article
Google Scholar
Ulloa G, Collao B, Araneda M, Escobar B, Álvarez S, Bravo D, Pérez-Donoso JM. Use of acidophilic bacteria of the genus Acidithiobacillus to biosynthesize CdS fluorescent nanoparticles (quantum dots) with high tolerance to acidic pH. Enzyme Microb Technol. 2016;95:217–24. https://doi.org/10.1016/j.enzmictec.2016.09.005.
Article
CAS
PubMed
Google Scholar
Choi Y, Park TJ, Lee DC, Lee SY. Recombinant Escherichia coli as a biofactory for various single-and multi-element nanomaterials. Proc Natl Acad Sci. 2018;115(23):5944–9. https://doi.org/10.1073/pnas.1804543115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tudu SC, Zubko M, Kusz J, Bhattacharjee A. CdS nanoparticles (< 5 nm): green synthesized using Termitomyces heimii mushroom–structural, optical and morphological studies. Appl Phys A. 2021;127(2):1–9. https://doi.org/10.1007/s00339-020-04245-3.
Article
CAS
Google Scholar
Zhang Y, Clapp A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors. 2011;11(12):11036–55. https://doi.org/10.3390/s111211036.
Article
PubMed
PubMed Central
Google Scholar
Ulloa G, Quezada CP, Araneda M, Escobar B, Fuentes E, Álvarez SA, Pérez-Donoso JM. Phosphate favors the biosynthesis of CdS quantum dots in Acidithiobacillus thiooxidans ATCC 19703 by improving metal uptake and tolerance. Front Microbiol. 2018;9:234. https://doi.org/10.3389/fmicb.2018.00234.
Article
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Huttley GA. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Gormley N. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4. https://doi.org/10.1038/ismej.2012.8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4): e61217. https://doi.org/10.1371/journal.pone.0061217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985;49(1):1–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elías AO, Abarca MJ, Montes RA, Chasteen TG, Pérez-Donoso JM, Vasquez CC. Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. Microbiol Open. 2012;1(3):259–67. https://doi.org/10.1002/mbo3.26.
Article
CAS
Google Scholar
Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334(6058):986–90. https://doi.org/10.1126/science.1209855.
Article
CAS
PubMed
Google Scholar
Venegas FA, Saona LA, Monrás JP, Órdenes-Aenishanslins N, Giordana MF, Ulloa G, Collao B, Bravo D, Pérez-Donoso JM. Biological phosphorylated molecules participate in the biomimetic and biological synthesis of cadmium sulphide quantum dots by promoting H2S release from cellular thiols. RSC Adv. 2017;7(64):40270–8. https://doi.org/10.1039/C7RA03578K.
Article
CAS
Google Scholar
Monrás JP, Díaz V, Bravo D, Montes RA, Chasteen TG, Osorio-Román IO, Vasquez CC, Pérez-Donoso JM. Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli. PLoS ONE. 2012;7(11): e48657. https://doi.org/10.1371/journal.pone.0048657.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danscher G, Nørgaard JR, Baatrup E. Autometallography: tissue metals demonstrated by a silver enhancement kit. Histochemistry. 1987;86(5):465–9. https://doi.org/10.1007/BF00500618.
Article
CAS
PubMed
Google Scholar
Chiao DJ, Shyu RH, Hu CS, Chiang HY, Tang SS. Colloidal gold-based immunochromatographic assay for detection of botulinum neurotoxin type B. J Chromatogr B. 2004;809(1):37–41. https://doi.org/10.1016/j.jchromb.2004.05.033.
Article
CAS
Google Scholar
Danscher G, Stoltenberg M. Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc–sulphur/zinc–selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Prog Histochem Cytochem. 2006;41(2):57–139. https://doi.org/10.1016/j.proghi.2006.06.001.
Article
CAS
PubMed
Google Scholar
Xie F, Baker MS, Goldys EM. Homogeneous silver-coated nanoparticle substrates for enhanced fluorescence detection. J Phys Chem B. 2006;110(46):23085–91. https://doi.org/10.1021/jp062170p.
Article
CAS
PubMed
Google Scholar
Hou SY, Chen HK, Cheng HC, Huang CY. Development of zeptomole and attomolar detection sensitivity of biotin− peptide using a dot− blot goldnanoparticle immunoassay. Anal Chem. 2007;79(3):980–5. https://doi.org/10.1021/ac061507g.
Article
CAS
PubMed
Google Scholar
Loumbourdis NS, Danscher G. Autometallographic tracing of Hg–S quantum dots in frogs exposed to inorganic mercury. Biometals. 2008;21(3):311. https://doi.org/10.1007/s10534-007-9120-9.
Article
CAS
PubMed
Google Scholar
Órdenes-Aenishanslins N, Anziani-Ostuni G, Monrás JP, Tello A, Bravo D, Toro-Ascuy D, Soto-Rifo R, Prasad PN, Pérez-Donoso JM. Bacterial synthesis of ternary CdSAg quantum dots through cation exchange: Tuning the composition and properties of biological nanoparticles for bioimaging and photovoltaic applications. Microorganisms. 2020;8(5):631. https://doi.org/10.3390/microorganisms8050631.
Article
CAS
PubMed Central
Google Scholar
Barklis E, Alfadhli A, McQuaw C, Yalamuri S, Still A, Barklis RL, López CS. Characterization of the in vitro HIV-1 capsid assembly pathway. J Mol Biol. 2009;387(2):376–89. https://doi.org/10.1016/j.jmb.2009.01.058.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson AG, Hebets EA. Female nursery web spiders (Pisaurina mira) benefit from consuming their mate. Ethology. 2018;124(7):475–82. https://doi.org/10.1111/eth.12751.
Article
Google Scholar
Zhang L, Liu H, Song Y. Determination of lithium in crown-ether separation process of lithium isotopes by using spectrophotometric method. Atomic Energy Sci Technol. 2006;40(2):206–11.
CAS
Google Scholar
Thomason PF. Spectrophotometric determination of lithium. Anal Chem. 1956;28(10):1527–30.
Article
CAS
Google Scholar
Flexer V, Baspineiro CF, Galli CI. Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Sci Total Environ. 2018;639:1188–204. https://doi.org/10.1016/j.scitotenv.2018.05.223.
Article
CAS
PubMed
Google Scholar
Ericksen GE, Chong G, Vila T. Lithium resources of salars in the central Andes In: Lithium Resources and Requirements by the Year 2000. US Geological Survey Professional Paper. 1976; 1005: 66–74.
Houston J, Butcher A, Ehren P, Evans K, Godfrey L. The evaluation of brine prospects and the requirement for modifications to filing standards. Econ Geol. 2011;106(7):1225–39. https://doi.org/10.2113/econgeo.106.7.1225.
Article
CAS
Google Scholar
Cabello J. Lithium brine production, reserves, resources and exploration in Chile: An updated review. Ore Geol Rev. 2021;128: 103883. https://doi.org/10.1016/j.oregeorev.2020.103883.
Article
Google Scholar
Tapia J, González R, Townley B, Oliveros V, Álvarez F, Aguilar G, Menzies A, Calderón M. Geology and geochemistry of the Atacama Desert. Antonie Van Leeuwenhoek. 2018;111:1273–91. https://doi.org/10.1007/s10482-018-1024-x.
Article
CAS
PubMed
Google Scholar
Wang F, Michalski G, Seo JH, Ge W. Geochemical, isotopic, and mineralogical constraints on atmospheric deposition in the hyper-arid Atacama Desert. Chile Geochimica et Cosmochimica Acta. 2014;135:29–48. https://doi.org/10.1016/j.gca.2014.03.017.
Article
CAS
Google Scholar
Martínez FL, Orce IG, Rajal VB, Irazusta VP. Salar del Hombre Muerto, source of lithium-tolerant bacteria. Environ Geochem Health. 2019;41(2):529–43. https://doi.org/10.1007/s10653-018-0148-2.
Article
CAS
PubMed
Google Scholar
Escudero L, Oetiker N, Gallardo K, Tebes-Cayo C, Guajardo M, Nuñez C, Davis-Belmar C, Pueyo JJ, Díaz GC, Demergasso C. A thiotrophic microbial community in an acidic bri ne lake in Northern Chile. Antonie Van Leeuwenhoek. 2018;111(8):1403–19. https://doi.org/10.1007/s10482-018-1087-8.
Article
PubMed
Google Scholar
Ahmed I, Kudo T, Abbas S, Ehsan M, Iino T, Fujiwara T, Ohkuma M. Cellulomonas pakistanensis sp nov, a moderately halotolerant Actinobacteria. Int J Syst Evol Microbiol. 2014;64(7):2305–11. https://doi.org/10.1099/ijs.0.059063-0.
Article
CAS
PubMed
Google Scholar
Hatayama K, Esaki K, Ide T. Cellulomonas soli sp. nov. and Cellulomonas oligotrophica sp. nov, isolated from soil. Int J Syst Evol Microbiol. 2013;63(1):60–5. https://doi.org/10.1099/ijs.0.038364-0.
Article
PubMed
Google Scholar
Reddy GS, Aggarwal RK, Matsumoto GI, Shivaji S. Arthrobacter flavus sp nov, a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley Antarctica. Int J Syst Evol Microbiol. 2000;50(4):1553–61. https://doi.org/10.1099/00207713-50-4-1553.
Article
CAS
PubMed
Google Scholar
Prasad S, Manasa BP, Buddhi S, Pratibha MS, Begum Z, Bandi S, Tirunagari P, Shivaji S. Arcticibacter svalbardensis gen nov, sp nov, of the family Sphingobacteriaceae in the phylum Bacteroidetes, isolated from Arctic soil. Int J Syst Evol Microbiol. 2013;63(5):1627–32. https://doi.org/10.1099/ijs.0.044420-0.
Article
CAS
PubMed
Google Scholar
SantaCruz-Calvo L, González-López J, Manzanera M. Arthrobacter siccitolerans sp nov, a highly desiccation-tolerant, xeroprotectant-producing strain isolated from dry soil. Int J Syst Evol Microbiol. 2013;63(11):4174. https://doi.org/10.1099/ijs.0.052902-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Q, Kim SG, Liu HC, Xin YH, Zhou YG. Arcticibacter pallidicorallinus sp. nov. isolated from glacier ice. Int J Syst Evol Microbiol. 2014;64(7):2229–32. https://doi.org/10.1099/ijs.0.061754-0.
Article
CAS
PubMed
Google Scholar
Shen L, Liu Y, Gu Z, Yao T, Xu B, Wang N, Zhou Y. Arcticibacter eurypsychrophilus sp. nov., isolated from ice core. Int J Syst Evol Microbiol. 2015;65(2):639–43. https://doi.org/10.1099/ijs.0.066365-0.
Article
CAS
PubMed
Google Scholar
Cebrián G, Arroyo C, Mañas P, Condón S. Bacterial maximum non-inhibitory and minimum inhibitory concentrations of different water activity depressing solutes. Int J Food Microbiol. 2014;188:67–74. https://doi.org/10.1016/j.ijfoodmicro.2014.07.011.
Article
CAS
PubMed
Google Scholar
Gallardo C, Monrás JP, Plaza DO, Collao B, Saona LA, Durán-Toro V, Venegas F, Soto C, Vasquez C, Bravo D, Pérez-Donoso JM. Low-temperature biosynthesis of fluorescent semiconductor nanoparticles (CdS) by oxidative stress resistant Antarctic bacteria. J Biotechnol. 2014;187:108–15. https://doi.org/10.1016/j.jbiotec.2014.07.017.
Article
CAS
PubMed
Google Scholar
Plaza DO, Gallardo C, Straub YD, Bravo D, Pérez-Donoso JM. Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories. Microb Cell Fact. 2016;15(1):76. https://doi.org/10.1186/s12934-016-0477-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li K, Xin Y, Xuan G, Zhao R, Liu H, Xia Y, Xun L. Escherichia coli uses separate enzymes to produce H2S and reactive sulfane sulfur from L-cysteine. Front Microbiol. 2019;10:298. https://doi.org/10.3389/fmicb.2019.00298.
Article
PubMed
PubMed Central
Google Scholar
Lormée P, Lécolle S, Septier D, Le Denmat D, Goldberg M. Autometallography for histochemical visualization of rat incisor polyanions with cuprolinic blue. J Histochem Cytochem. 1989;37(2):203–8. https://doi.org/10.1177/37.2.2642940.
Article
PubMed
Google Scholar
Danscher G, Hacker GW, Stoltenberg M. Autometallographic tracing of gold, silver, bismuth, mercury and zinc. Gold and silver staining. Techniques in Molecular Morphology. Boca Raton: CRC Press; 2002. p. 13–27.
Google Scholar
Danscher G, Stoltenberg M, Bruhn M, Søndergaard C, Jensen D. Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals. J Histochem Cytochem. 2004;52(12):1619–25. https://doi.org/10.1369/jhc.4A6371.2004.
Article
CAS
PubMed
Google Scholar
Kohl M, Brückner J, Bauer I, Althues H, Kaskel S. Synthesis of highly electrochemically active Li2S nanoparticles for lithium–sulfur-batteries. J Mater Chem A. 2015;3(31):16307–12. https://doi.org/10.1039/C5TA04504E.
Article
CAS
Google Scholar
Yang Y, Zheng G, Misra S, Nelson J, Toney MF, Cui Y. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. J Am Chem Soc. 2012;134(37):15387–94. https://doi.org/10.1021/ja3052206.
Article
CAS
PubMed
Google Scholar
Gallardo-Benavente C, Carrión O, Todd JD, Pieretti JC, Seabra AB, Durán N, Quiroz A. Biosynthesis of CdS quantum dots mediated by volatile sulfur compounds released by Antarctic Pseudomonas fragi. Front Microbiol. 2019;10:1866. https://doi.org/10.3389/fmicb.2019.01866.
Article
PubMed
PubMed Central
Google Scholar
Yang Z, Lu L, Berard VF, He Q, Kiely CJ, Berger BW, McIntosh S. Biomanufacturing of CdS quantum dots. Green Chem. 2015;17(7):3775–82. https://doi.org/10.1039/C5GC00194C.
Article
CAS
Google Scholar
Arias D, Cisternas LA, Miranda C, Rivas M. Bioprospecting of ureolytic bacteria from Laguna Salada for biomineralization applications. Front Bioeng Biotechnol. 2019;6:209. https://doi.org/10.3389/fbioe.2018.00209.
Article
PubMed
PubMed Central
Google Scholar
Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie Van Leeuwenhoek. 2018;111(8):1315–32. https://doi.org/10.1007/s10482-018-1088-7.
Article
CAS
PubMed
Google Scholar
Bull AT, Asenjo JA, Goodfellow M, Gomez-Silva B. The Atacama Desert: technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol. 2016;70:215–34. https://doi.org/10.1146/annurev-micro-102215-095236.
Article
CAS
PubMed
Google Scholar
Cubillos CF, Aguilar P, Grágeda MY, Dorador C. Microbial communities from the world’s largest lithium reserve, Salar de Atacama, Chile: life at high LiCl concentrations. J Geophys Res. 2018;123(12):3668–81. https://doi.org/10.1029/2018JG004621.
Article
CAS
Google Scholar
Tran T, Luong VT. Lithium production processes, Lithium process chemistry. New York: Elsevier; 2015. p. 81–124.
Book
Google Scholar
Cubillos CF, Paredes A, Yáñez C, Palma J, Severino E, Vejar D, Grájeda M, Dorador C. Insights into the Microbiology of the chaotropic brines of Salar de Atacama. Chile Front Microbiol. 2019;10:1611. https://doi.org/10.3389/fmicb.2019.01611.
Article
PubMed
Google Scholar
Rubin SS, Marín I, Gómez MJ, Morales EA, Zekker I, San Martín-Uriz P, Amils R. Prokaryotic diversity, and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat. Environ Microbiol. 2017;19(9):3745–54. https://doi.org/10.1111/1462-2920.13876.
Article
CAS
Google Scholar
Ding D, Chen G, Wang B, Wang Q, Liu D, Peng M, Shi P. Culturable actinomycetes from desert ecosystem in northeast of Qinghai-Tibet Plateau. Ann Microbiol. 2013;63(1):259–66. https://doi.org/10.1007/s13213-012-0469-9.
Article
CAS
Google Scholar
Jiang F, Dai J, Wang Y, Xue X, Xu M, Guo Y, Peng F. Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. Int J Syst Evolut Microbiol. 2012;62(7):1630–5. https://doi.org/10.1099/ijs.0.033902-0.
Article
CAS
Google Scholar
Shen L, Liu Y, Xu B, Wang N, Zhao H, Liu X, Liu F. Comparative genomic analysis reveals the environmental impacts on two Arcticibacter strains including sixteen Sphingobacteriaceae species. Sci Rep. 2017;7(1):1–12. https://doi.org/10.1038/s41598-017-02191-4.
Article
CAS
Google Scholar
Ramírez-Bahena MH, Cuesta MJ, Flores-Felix JD, Mulas R, Rivas R, Castro-Pinto J, Peix A. Pseudomonas helmanticensis sp nov, isolated from forest soil. Int J Syst Evolut Microbiol. 2014;64(7):2338–45. https://doi.org/10.1099/ijs.0.063560-0.
Article
CAS
Google Scholar
Liu M, Luo X, Zhang L, Dai J, Wang Y, Tang Y, Fang C. Pseudomonas xinjiangensis sp. nov., a moderately thermotolerant bacterium isolated from desert sand. Int J Syst Evolut Microbiol. 2009;59(6):1286–9. https://doi.org/10.1099/ijs.0.001420-0.
Article
CAS
Google Scholar
Selvakumar G, Joshi P, Nazim S, Mishra PK, Bisht JK, Gupta HS. Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high-altitude Himalayan rhizosphere. Biologia. 2009;64(2):239–45. https://doi.org/10.2478/s11756-009-0041-7.
Article
CAS
Google Scholar
Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K, Kawasaki K. Pseudomonas alcaliphila sp nov, a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evolut Microbiol. 2001;51(2):349–55. https://doi.org/10.1099/00207713-51-2-349.
Article
CAS
Google Scholar
Haferburg G, Gröning JAD, Schmidt N, Kummer NA, Erquicia JC, Schölmann M. Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni. Bolivia Microbiol Res. 2017;199:19–28. https://doi.org/10.1016/j.micres.2017.02.007.
Article
CAS
PubMed
Google Scholar
Pedrós-Alió C. Trophic ecology of solar salterns. In: Halophilic microorganisms, Springer: Berlin, Heidelberg, 2004; 33–48. https://doi.org/10.1007/978-3-662-07656-9_2
Ruginescu R, Purcărea C, Dorador C, Lavin P, Cojoc R, Neagu S, Enache M. Exploring the hydrolytic potential of cultured halophilic bacteria isolated from the Atacama Desert. FEMS microbial Lett. 2019;366(17):224. https://doi.org/10.1093/femsle/fnz224.
Article
CAS
Google Scholar
Leu JY, McGovern-Traa CP, Porter AJR, Hamilton WA. The same species of sulphate-reducing Desulfomicrobium occur in different oil field environments in the North Sea. Lett Appl Microbiol. 1999;29(4):246–52. https://doi.org/10.1046/j.1365-2672.1999.00628.x.
Article
CAS
PubMed
Google Scholar
Cui D, Wang J, Wang H, Yang Y, Zhao M. The cytotoxicity of endogenous CdS and Cd2+ ions during CdS NPs biosynthesis. J Hazard Mater. 2020. https://doi.org/10.1016/j.jhazmat.2020.124485.
Article
PubMed
Google Scholar
Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci. 1999;96(24):13611–4. https://doi.org/10.1073/pnas.96.24.13611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rang CU, Proenca A, Buetz C, Shi C, Chao L. Minicells as a damage disposal mechanism in Escherichia coli. Msphere. 2018;3:5. https://doi.org/10.1128/mSphere.00428-18.
Article
Google Scholar
Blomgren GE. The development and future of lithium ion batteries. J Electrochem Soc. 2017;164(1):A5019–25. https://doi.org/10.1149/2.0251701jes.
Article
CAS
Google Scholar