Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, et al. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis. PLoS Med. 2015;12(12):e1001920.
Article
PubMed
PubMed Central
Google Scholar
Huang JY, Henao OL, Griffin PM, Vugia DJ, Cronquist AB, Hurd S, et al. Infection with pathogens transmitted commonly through food and the effect of increasing use of culture-independent diagnostic tests on surveillance–foodborne diseases active surveillance network, 10 U.S. Sites, 2012–2015. MMWR Morb Mortal Wkly Rep. 2016;65(14):368–71.
Article
PubMed
Google Scholar
Powell MR. Trends in reported foodborne illness in the United States; 1996–2013. Risk Anal. 2016;36(8):1589–98.
Article
PubMed
Google Scholar
Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot. 2014;77(1):150–70.
Article
CAS
PubMed
Google Scholar
Buchanan R, Gorris L, Hayman M, Jackson TC, Whiting RC. A review of Listeria monocytogenes: an update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control. 2017;75:13.
Article
Google Scholar
Thakur M, Asrani RK, Patial V. Chapter 6 —Listeria monocytogenes: a food-borne pathogen. In: Holban AM, Grumezescu AM, editors. Foodborne Diseases. Cambridge: Academic Press; 2018. p. 157–92.
Google Scholar
Schlech WF. Epidemiology and clinical manifestations of Listeria monocytogenes infection. Microbiol Spectr. 2019;7(3):7.
Article
Google Scholar
Barria C, Malecki M, Arraiano CM. Bacterial adaptation to cold. Microbiology. 2013;159(Pt 12):2437–43.
Article
CAS
PubMed
Google Scholar
Gandhi M, Chikindas ML. Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol. 2007;113(1):1–15.
Article
PubMed
Google Scholar
Piveteau P, Depret G, Pivato B, Garmyn D, Hartmann A. Changes in gene expression during adaptation of Listeria monocytogenes to the soil environment. PLoS ONE. 2011;6(9):e24881.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whitman KJ, Bono JL, Clawson ML, Loy JD, Bosilevac JM, Arthur TM, et al. Genomic-based identification of environmental and clinical Listeria monocytogenes strains associated with an abortion outbreak in beef heifers. BMC Vet Res. 2020;16(1):70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodas-Suárez OR, Flores-Pedroche JF, Betancourt-Rule JM, Quiñones-Ramírez EI, Vázquez-Salinas C. Occurrence and antibiotic sensitivity of Listeria monocytogenes strains isolated from oysters, fish, and estuarine water. Appl Environ Microbiol. 2006;72(11):7410–2.
Article
PubMed
PubMed Central
Google Scholar
Weller D, Wiedmann M, Strawn LK. Irrigation is significantly associated with an increased prevalence of Listeria monocytogenes in produce production environments in New York State. J Food Prot. 2015;78(6):1132–41.
Article
PubMed
Google Scholar
Bucur FI, Grigore-Gurgu L, Crauwels P, Riedel CU, Nicolau AI. Resistance of Listeria monocytogenes to stress conditions encountered in food and food processing environments. Front Microbiol. 2018;9:2700.
Article
PubMed
PubMed Central
Google Scholar
Kallipolitis B, Gahan CGM, Piveteau P. Factors contributing to Listeria monocytogenes transmission and impact on food safety. Curr Opin Food Sci. 2020;36:9–17.
Article
Google Scholar
Tan X, Chung T, Chen Y, Macarisin D, LaBorde L, Kovac J. The occurrence of Listeria monocytogenes is associated with built environment microbiota in three tree fruit processing facilities. Microbiome. 2019;7(1):115.
Article
PubMed
PubMed Central
Google Scholar
Fang H, Kang J, Zhang D. Microbial production of vitamin B(12): a review and future perspectives. Microb Cell Fact. 2017;16(1):15.
Article
PubMed
PubMed Central
Google Scholar
Gruber K, Puffer B, Kräutler B. Vitamin B12-derivatives-enzyme cofactors and ligands of proteins and nucleic acids. Chem Soc Rev. 2011;40(8):4346–63.
Article
CAS
PubMed
Google Scholar
Kräutler B. Vitamin B12: chemistry and biochemistry. Biochem Soc Trans. 2005;33(Pt 4):806–10.
Article
PubMed
Google Scholar
Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol. 1996;50:137–81.
Article
CAS
PubMed
Google Scholar
Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep. 2002;19(4):390–412.
Article
CAS
PubMed
Google Scholar
Raux E, Lanois A, Levillayer F, Warren MJ, Brody E, Rambach A, et al. Salmonella typhimurium cobalamin (vitamin B12) biosynthetic genes: functional studies in S. typhimurium and Escherichia coli. J Bacteriol. 1996;178(3):753–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem. 2003;278(42):41148–59.
Article
CAS
PubMed
Google Scholar
Scott AI, Roessner CA. Biosynthesis of cobalamin (vitamin B(12)). Biochem Soc Trans. 2002;30(4):613–20.
Article
CAS
PubMed
Google Scholar
Ferrer A, Rivera J, Zapata C, Norambuena J, Sandoval Á, Chávez R, et al. Cobalamin protection against oxidative stress in the acidophilic iron-oxidizing bacterium Leptospirillum group II CF-1. Front Microbiol. 2016;7:748.
Article
PubMed
PubMed Central
Google Scholar
Anast JM, Bobik TA, Schmitz-Esser S. The cobalamin-dependent gene cluster of Listeria monocytogenes: implications for virulence, stress response, and food safety. Front Microbiol. 2020;11:601816.
Article
PubMed
PubMed Central
Google Scholar
Anast JM, Schmitz-Esser S. The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes. PLoS ONE. 2020;15(7):e0233945.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang S, Orsi RH, den Bakker HC, Wiedmann M, Boor KJ, Bergholz TM. Transcriptomic analysis of the adaptation of Listeria monocytogenes to growth on vacuum-packed cold smoked salmon. Appl Environ Microbiol. 2015;81(19):6812–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parra A, Toro M, Jacob R, Navarrete P, Troncoso M, Figueroa G, et al. Antimicrobial effect of copper surfaces on bacteria isolated from poultry meat. Braz J Microbiol. 2018;49(Suppl 1):113–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilks SA, Michels HT, Keevil CW. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Int J Food Microbiol. 2006;111(2):93–8.
Article
PubMed
Google Scholar
Hans M, Mathews S, Mücklich F, Solioz M. Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases. 2015;11(1):018902.
Article
PubMed
Google Scholar
Li C, Li Y, Ding C. The role of copper homeostasis at the host-pathogen axis: from bacteria to fungi. Int J Mol Sci. 2019;20(1):175.
Article
PubMed Central
Google Scholar
Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol. 2020;114(3):377–90.
Article
CAS
PubMed
Google Scholar
Reyes-Jara A, Latorre M, López G, Bourgogne A, Murray BE, Cambiazo V, et al. Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. Biometals. 2010;23(6):1105–12.
Article
CAS
PubMed
Google Scholar
Latorre M, Quesille-Villalobos AM, Maza F, Parra A, Reyes-Jara A. Synergistic effect of copper and low temperature over Listeria monocytogenes. Biometals. 2015;28(6):1087–92.
Article
CAS
PubMed
Google Scholar
Quesille-Villalobos AM, Parra A, Maza F, Navarrete P, González M, Latorre M, et al. The combined effect of cold and copper stresses on the proliferation and transcriptional response of Listeria monocytogenes. Front Microbiol. 2019;10:612.
Article
PubMed
PubMed Central
Google Scholar
Cordero N, Maza F, Navea-Perez H, Aravena A, Marquez-Fontt B, Navarrete P, et al. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature. Front Microbiol. 2016;7:229.
Article
PubMed
PubMed Central
Google Scholar
Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, et al. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME J. 2019;13(3):789–804.
Article
CAS
PubMed
Google Scholar
Watanabe F, Bito T. Vitamin B(12) sources and microbial interaction. Exp Biol Med. 2018;243(2):148–58.
Article
CAS
Google Scholar
Balabanova L, Averianova L, Marchenok M, Son O, Tekutyeva L. Microbial and genetic resources for cobalamin (Vitamin B12) biosynthesis: from ecosystems to industrial biotechnology. Int J Mol Sci. 2021;22(9):4522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn AC, Jongepier E, Schuurmans JM, Rijpstra WIC, Sinninghe Damsté JS, Galinski EA, et al. Molecular and physiological adaptations to low temperature in Thioalkalivibrio strains isolated from soda lakes with different temperature regimes. mSystems. 2021;6(2):e01202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn AC, Cavalca L, Colombo M, Schuurmans JM, Sorokin DY, Muyzer G. transcriptomic analysis of two Thioalkalivibrio species under arsenite stress revealed a potential candidate gene for an alternative arsenite oxidation pathway. Front Microbiol. 2019;10:1514.
Article
PubMed
PubMed Central
Google Scholar
Fox EM, Leonard N, Jordan K. Physiological and transcriptional characterization of persistent and nonpersistent Listeria monocytogenes isolates. Appl Environ Microbiol. 2011;77(18):6559–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Casey A, Fox EM, Schmitz-Esser S, Coffey A, McAuliffe O, Jordan K. Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility. Front Microbiol. 2014;5:68.
Article
PubMed
PubMed Central
Google Scholar
Mellin JR, Koutero M, Dar D, Nahori MA, Sorek R, Cossart P. Riboswitches. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science. 2014;345(6199):940–3.
Article
CAS
PubMed
Google Scholar
Kipkorir T, Mashabela GT, de Wet TJ, Koch A, Wiesner L, Mizrahi V, et al. De novo cobalamin biosynthesis, transport, and assimilation and cobalamin-mediated regulation of methionine biosynthesis in Mycobacterium smegmatis. J Bacteriol. 2021;203(7):e00620.
Article
CAS
PubMed
PubMed Central
Google Scholar
Woodson JD, Zayas CL, Escalante-Semerena JC. A new pathway for salvaging the coenzyme B12 precursor cobinamide in archaea requires cobinamide-phosphate synthase (CbiB) enzyme activity. J Bacteriol. 2003;185(24):7193–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fresquet V, Williams L, Raushel FM. Partial randomization of the four sequential amidation reactions catalyzed by cobyric acid synthetase with a single point mutation. Biochemistry. 2007;46(49):13983–93.
Article
CAS
PubMed
Google Scholar
Bubert A, Köhler S, Goebel W. The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl Environ Microbiol. 1992;58(8):2625–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koyama M, Katayama S, Kaji M, Taniguchi Y, Matsushita O, Minami J, et al. A Clostridium perfringens hem gene cluster contains a cysG(B) homologue that is involved in cobalamin biosynthesis. Microbiol Immunol. 1999;43(10):947–57.
Article
CAS
PubMed
Google Scholar
Zayas CL, Claas K, Escalante-Semerena JC. The CbiB protein of Salmonella enterica is an integral membrane protein involved in the last step of the de novo corrin ring biosynthetic pathway. J Bacteriol. 2007;189(21):7697–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.
Article
CAS
Google Scholar
Tasara T, Stephan R. Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR. FEMS Microbiol Lett. 2007;269(2):265–72.
Article
CAS
PubMed
Google Scholar
Rychli K, Guinane CM, Daly K, Hill C, Cotter PD. Generation of nonpolar deletion mutants in Listeria monocytogenes using the “SOEing” Method. In: Jordan K, Fox EM, Wagner M, editors. Listeria monocytogenes: methods and protocols. New York: Springer; 2014. p. 187–200.
Chapter
Google Scholar
R Core Team. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.