Grav LM, Lee JS, Gerling S, Kallehauge TB, Hansen AH, Kol S, et al. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol J. 2015;10(9):1446–56.
Article
CAS
PubMed
Google Scholar
Safari F, Farajnia S, Ghasemi Y, Zarghami N, Barekati MM. Multiplex genome editing in chinese hamster ovary cell line using all-in-one and HITI CRISPR technology. Adv Pharm Bull. 2021;11(2):343–50.
CAS
PubMed
Google Scholar
Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32(10):992–1000.
Article
CAS
PubMed
Google Scholar
Hwang SO, Lee GM. Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnol Bioeng. 2008;99(3):678–85.
Article
CAS
PubMed
Google Scholar
Lamkanfi M, Kanneganti TD. Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol. 2010;42(1):21–4.
Article
CAS
PubMed
Google Scholar
Krampe B, Al-Rubeai M. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology. 2010;62(3):175–88.
Article
PubMed
PubMed Central
Google Scholar
Connolly P, Garcia-Carpio I, Villunger A. Cell-cycle cross talk with caspases and their substrates. Cold Spring Harbor Perspect Biol. 2020;12(6):a036475.
Article
CAS
Google Scholar
Fattman CL, Delach SM, Dou QP, Johnson DE. Sequential two-step cleavage of the retinoblastoma protein by caspase-3/-7 during etoposide-induced apoptosis. Oncogene. 2001;20(23):2918–26.
Article
CAS
PubMed
Google Scholar
Jänicke RU, Walker PA, Lin XY, Porter AG. Specific cleavage of the retinoblastoma protein by an ICE-like protease in apoptosis. EMBO J. 1996;15(24):6969–78.
Article
PubMed
PubMed Central
Google Scholar
Safari F, Farajnia S, Arya M, Zarredar H, Nasrolahi A. CRISPR and personalized Treg therapy: new insights into the treatment of rheumatoid arthritis. Immunopharmacol Immunotoxicol. 2018;40(3):201–11.
Article
CAS
PubMed
Google Scholar
Safari F, Afarid M, Rastegari B, Borhani-Haghighi A, Barekati-Mowahed M, Behzad-Behbahani A. CRISPR systems: novel approaches for detection and combating COVID-19. Virus Res. 2021;294:198282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zare K, Shademan M, Ghahramani Seno MM, Dehghani H. CRISPR/Cas9 knockout strategies to ablate CCAT1 lncRNA gene in cancer cells. Biol Proced Online. 2018;20:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Safari F, Farajnia S, Behzad Behbahani A, Zarredar H, Barekati-Mowahed M, Dehghani H. Caspase-7 deficiency in Chinese hamster ovary cells reduces cell proliferation and viability. Biol Res. 2020;53(1):52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korzyńska A, Zychowicz M. A method of estimation of the cell doubling time on basis of the cell culture monitoring data. Biocybern Biomed Eng. 2008;28(4):75–82.
Google Scholar
Lukas J, Lukas C, Bartek J. Mammalian cell cycle checkpoints: signalling pathways and their organization in space and time. DNA Repair. 2004;3(8–9):997–1007.
Article
CAS
PubMed
Google Scholar
Hacker DL, De Jesus M, Wurm FM. 25 years of recombinant proteins from reactor-grown cells—where do we go from here? Biotechnol Adv. 2009;27(6):1023–7.
Article
CAS
PubMed
Google Scholar
Borth N, Zeyda M, Kunert R, Katinger H. Efficient selection of high-producing subclones during gene amplification of recombinant Chinese hamster ovary cells by flow cytometry and cell sorting. Biotechnol Bioeng. 2000;71(4):266–73.
Article
CAS
PubMed
Google Scholar
Kim JD, Yoon Y, Hwang HY, Park JS, Yu S, Lee J, et al. Efficient selection of stable chinese hamster ovary (CHO) cell lines for expression of recombinant proteins by using human interferon beta SAR element. Biotechnol Prog. 2005;21(3):933–7.
Article
CAS
PubMed
Google Scholar
Zarredar H, Pashapour S, Farajnia S, Ansarin K, Baradaran B, Ahmadzadeh V, et al. Targeting the KRAS, p38α, and NF-κB in lung adenocarcinoma cancer cells: the effect of combining RNA interferences with a chemical inhibitor. J Cell Biochem. 2019;120(6):10670–7.
Article
CAS
PubMed
Google Scholar
Safari F, Farajnia S, Ghasemi Y, Zarghami N. New developments in CRISPR technology: improvements in specificity and efficiency. Curr Pharm Biotechnol. 2017;18(13):1038–54.
Article
CAS
PubMed
Google Scholar
Arden N, Betenbaugh MJ. Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends Biotechnol. 2004;22(4):174–80.
Article
CAS
PubMed
Google Scholar
Kim NS, Lee GM. Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol Bioeng. 2000;71(3):184–93.
Article
CAS
PubMed
Google Scholar
Walsh JG, Cullen SP, Sheridan C, Lüthi AU, Gerner C, Martin SJ. Executioner caspase-3 and caspase-7 are functionally distinct proteases. Proc Natl Acad Sci USA. 2008;105(35):12815–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Julien O, Wells JA. Caspases and their substrates. Cell Death Differ. 2017;24(8):1380–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sung YH, Lee JS, Park SH, Koo J, Lee GM. Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng. 2007;9(5–6):452–64.
Article
CAS
PubMed
Google Scholar
Kumar N, Gammell P, Clynes M. Proliferation control strategies to improve productivity and survival during CHO based production culture: a summary of recent methods employed and the effects of proliferation control in product secreting CHO cell lines. Cytotechnology. 2007;53(1–3):33–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer U, Jänicke RU, Schulze-Osthoff K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ. 2003;10(1):76–100.
Article
CAS
PubMed
Google Scholar
Kim M, Murphy K, Liu F, Parker SE, Dowling ML, Baff W, et al. Caspase-mediated specific cleavage of BubR1 is a determinant of mitotic progression. Mol Cell Biol. 2005;25(21):9232–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faragher AJ, Sun XM, Butterworth M, Harper N, Mulheran M, Ruchaud S, et al. Death receptor-induced apoptosis reveals a novel interplay between the chromosomal passenger complex and CENP-C during interphase. Mol Biol Cell. 2007;18(4):1337–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Misaghi S, Korbel GA, Kessler B, Spooner E, Ploegh HL. z-VAD-fmk inhibits peptide:N-glycanase and may result in ER stress. Cell Death Differ. 2006;13(1):163–5.
Article
CAS
PubMed
Google Scholar
Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol. 2002;3(10):731–41.
Article
CAS
PubMed
Google Scholar
Bharadwaj R, Yu H. The spindle checkpoint, aneuploidy, and cancer. Oncogene. 2004;23(11):2016–27.
Article
CAS
PubMed
Google Scholar
Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432(7015):316–23.
Article
CAS
PubMed
Google Scholar
Abaandou L, Sharma AK, Shiloach J. Knockout of the caspase 8-associated protein 2 gene improves recombinant protein expression in HEK293 cells through up-regulation of the cyclin-dependent kinase inhibitor 2A gene. Biotechnol Bioeng. 2021;118(1):186–98.
Article
CAS
PubMed
Google Scholar
Du Z, Treiber D, McCarter JD, Fomina-Yadlin D, Saleem RA, McCoy RE, et al. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures. Biotechnol Bioeng. 2015;112(1):141–55.
Article
CAS
PubMed
Google Scholar
Hendrick V, Winnepenninckx P, Abdelkafi C, Vandeputte O, Cherlet M, Marique T, et al. Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnology. 2001;36(1–3):71–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ibarra N, Watanabe S, Bi JX, Shuttleworth J, Al-Rubeai M. Modulation of cell cycle for enhancement of antibody productivity in perfusion culture of NS0 cells. Biotechnol Prog. 2003;19(1):224–8.
Article
CAS
PubMed
Google Scholar
Bi JX, Shuttleworth J, Al-Rubeai M. Uncoupling of cell growth and proliferation results in enhancement of productivity in p21CIP1-arrested CHO cells. Biotechnol Bioeng. 2004;85(7):741–9.
Article
CAS
PubMed
Google Scholar
Carvalhal AV, Marcelino I, Carrondo MJ. Metabolic changes during cell growth inhibition by p27 overexpression. Appl Microbiol Biotechnol. 2003;63(2):164–73.
Article
CAS
PubMed
Google Scholar
Dez C, Tollervey D. Ribosome synthesis meets the cell cycle. Curr Opin Microbiol. 2004;7(6):631–7.
Article
CAS
PubMed
Google Scholar
Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. 1999;144(2):281–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stennicke HR, Jürgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, et al. Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem. 1998;273(42):27084–90.
Article
CAS
PubMed
Google Scholar
Thornberry NA, Rano TA, Peterson EP, Rasper DM, Timkey T, Garcia-Calvo M, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem. 1997;272(29):17907–11.
Article
CAS
PubMed
Google Scholar
Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science (New York, NY). 2006;311(5762):847–51.
Article
CAS
Google Scholar
Zheng TS, Hunot S, Kuida K, Momoi T, Srinivasan A, Nicholson DW, et al. Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med. 2000;6(11):1241–7.
Article
CAS
PubMed
Google Scholar
Takahashi K, Kamiya K, Urase K, Suga M, Takizawa T, Mori H, et al. Caspase-3-deficiency induces hyperplasia of supporting cells and degeneration of sensory cells resulting in the hearing loss. Brain Res. 2001;894(2):359–67.
Article
CAS
PubMed
Google Scholar
Fallon AM, Hellestad VJ. Standardization of a colorimetric method to quantify growth and metabolic activity of Wolbachia-infected mosquito cells. In Vitro Cell Dev Biol Anim. 2008;44(8–9):351–6.
Article
PubMed
PubMed Central
Google Scholar
Traganos F. Flow cytometry: principles and applications. I. Cancer Investig. 1984;2(2):149–63.
Article
CAS
Google Scholar