Dubey S, Shri M, Gupta A, Rani V, Chakrabarty D. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ Chem Lett. 2018;16:1169–92.
CAS
Google Scholar
Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 2002;53:1–11.
CAS
PubMed
Google Scholar
Zhao FJ, Mcgrath SP, Meharg AA. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol. 2010;61:535–59.
CAS
PubMed
Google Scholar
Xu WZ, Dai WT, Yan HL, Li S, Shen Yan HL, Chen YH, Xu H. Arabidopsis NIP3;1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant. 2015;8:722–33.
CAS
PubMed
Google Scholar
He ZY, Yan HL, Chen YS, Shen HL, Xu WX, Zhang HY, Shi L, Zhu YG, Ma M. An aquaporin PvTIP4;1 from pterisvittata may mediate arsenite uptake. New Phytol. 2016;209:746–61.
CAS
PubMed
Google Scholar
Shruti M, Dubey RS. Heavy metal uptake and detoxification mechanisms in plants. Int J Agr Res. 2006;1:122–41.
Google Scholar
Gautam N, Verma PK, Verma S, Tripathi RD, Trivedi PK, Adhikari B, Chakrabarty D. Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. Funct Integ Genomi. 2012;12:635–47.
CAS
Google Scholar
Chi CN, Ding GH. Research progress of the molecular biology in heavy metal tolerance of plants. Biotechnol Bull. 2017;33:6–11 (in Chinese).
Google Scholar
Margoshes M, Vallee BL. A cadmium protein from equine kidney cortex. J Am Chem Soc. 1957;79:4813–4.
CAS
Google Scholar
Leszczyszyn OI, Imam HT, Blindauer CA. Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics Integr Biometal Sci. 2013;5:1146–69.
CAS
Google Scholar
Domènech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S. Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie. 2006;88:583–93.
PubMed
Google Scholar
Prasad MNV. Metallothioneins, metal binding complexes and metal sequestration in plants[M]. Heavy metal stress in plants: From biomolecules to ecosystems, Prasad MNV, Berlin, Heidelberg,Springer Berlin Heidelberg. 2004; 47–83.
Lane B, Kajioka R, Kennedy T. The wheat-germ Ec protein is a zinc-containing metallothionein. Biochem Cell Biol. 1987;65:1001–5.
CAS
Google Scholar
Kohler A, Blaudez D, Chalot M, Francis M. Cloning and expression of multiple metallothioneins from hybrid poplar. New Phytol. 2010;164:83–93.
Google Scholar
Hegelund JN, Schiller M, Kichey T, Hansen TH, Pedas P, Husted S, Schjoerring JK. Barley metallothioneins: MT3 and MT4 are localized in the grain aleurone layer and show differential zinc binding. Plant Physiol. 2012;159:1125–37.
CAS
PubMed
PubMed Central
Google Scholar
Hassinen VH, Tuomainen M, Peraniemi S, Schat H, Karenlampi SO, Tervahauta AI. Metallothioneins 2 and 3 contribute to the metal-adapted phenotype but are not directly linked to Zn accumulation in the metal hyperaccumulator, Thlaspicaerulescens. J Exp Bot. 2009;60:187–96.
CAS
PubMed
Google Scholar
Giritch A, Ganal M, Stephan UW, Bäumlein H. Structure, expression and chromosomal localisation of the metallothionein-like gene family of tomato. Plant Mol Biol. 1998;37:701–14.
CAS
PubMed
Google Scholar
Pagani MA, Tomas M, Carrillo J, Bofill R, Capdevila M, Atrian S, Andreo CS. The response of the different soybean metallothionein isoforms to cadmium intoxication. J Inorg Biochem. 2012;117:306–15.
CAS
PubMed
Google Scholar
Zhou Y, Chu P, Chen H, Li Y, Liu J, Ding Y, Tsang EWT, Jiang LW, Wu KQ, Huang SZ. Overexpression of Nelumbo nucifera metallothioneins 2a and 3 enhances seed germination vigor in Arabidopsis. Planta. 2012;235:523–37.
CAS
PubMed
Google Scholar
Roosens NH, Leplae R, Bernard C, Verbruggen N. Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspicaerulescensas a study case. Planta. 2005;222:716–29.
CAS
PubMed
Google Scholar
Schor-Fumbarov T, Goldsbrough PB, Adam Z, Elisha TO. Characterization and expression of a metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta. 2005;223:69–76.
CAS
PubMed
Google Scholar
Liu P, Goh CJ, Loh CS, Pua EC. Differential expression and characterization of three metallothionein-like genes in Cavendish banana (Musa acuminata). Physiol Plantarum. 2002;114:241–50.
CAS
Google Scholar
Zhou GK, Xu YF, Liu JY. Characterization of a rice class II metallothionein gene: tissue expression patterns and induction in response to abiotic factors. J Plant Physiol. 2005;162:686–96.
CAS
PubMed
Google Scholar
Zhang J, Zhang M, Tian S, Lu LL, Shohag MJI, Yang XE. Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco. PLoS ONE. 2014;9:e102750.
PubMed
PubMed Central
Google Scholar
Singh RK, Anandhan S, Singh S, Patade VY, Ahmed Z, Pande V. Metallothionein-like gene from Cicer microphyllum is regulated by multiple abiotic stresses. Protoplasma. 2011;248:839–47.
CAS
PubMed
Google Scholar
Chyan CL, Lee TT, Liu CP, Yang YC, Tzen JTC, Chou WM. Cloning and expression of a seed-specific metallothionein-like protein from sesame. Biosci Biotech Bioch. 2005;69:2319–25.
CAS
Google Scholar
Zhou J, Goldsbrough PB. Structure, organization and expression of the metallothionein gene family in Arabidopsis. Mol Gen Genet. 1995;248:318–28.
CAS
PubMed
Google Scholar
Guo W, Bundithya W, Goldsbrough PB. Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol. 2003;159:369–81.
CAS
PubMed
Google Scholar
Pan Y, Zhu M, Wang S, Ma GQ, Huang XH, Qiao CL, Wang R, Xu XF, Liang Y, Lu K, Li JN, Qu CM. Genome-wide characterization and analysis of metallothionein family genes that function in metal stress tolerance in Brassica napus L. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19082181.
Article
PubMed
PubMed Central
Google Scholar
Huang Y, Fang Y, Long X, Liu LY, Wang J, Zhu JH, Ma YY, Qin YX, Qi JY, Hu XW, Tang CR. Characterization of the rubber tree metallothionein family reveals a role in mitigating the effects of reactive oxygen species associated with physiological stress. Tree Physiol. 2018;38:911–24.
CAS
PubMed
Google Scholar
Pakdee O, Songnuan W, Panvisavas N, Pokethitiyook P, Yokthongwattana K, Meetam M. Functional characterization of metallothionein-like genes from Physcomitrella patens: expression profiling, yeast heterologous expression, and disruption of PpMT1.2a gene. Planta. 2019;250:427–43.
CAS
PubMed
Google Scholar
Bulgarelli RG, Araujo P, Tezotto T, Mazzafera P, Andrade SAL. Expression of metallothionein genes in coffee leaves in response to the absence or excess of Cu and Zn. Theor Exp Plant Phys. 2016;28:371–83.
Google Scholar
Kim YO, Kang H. Comparative expression analysis of genes encoding metallothioneins in response to heavy metals and abiotic stresses in rice (Oryza sativa) and Arabidopsis thaliana. Biosci Biotech Bioch. 2018;82:1656–65.
CAS
Google Scholar
Zhou G, Xu Y, Li J, Yang LY, Liu JY. Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). J Biochem Mol Biol. 2006;39:595–606.
CAS
PubMed
Google Scholar
Chen Yun. Cloning and functional identification of sugarcane metallothionein family genes [D]. Fujian Agriculture and Forestry University, 2016.
Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek SLS, Pareek A. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC Plant Biol. 2012;12:107.
CAS
PubMed
PubMed Central
Google Scholar
Wong HL, Sakamoto T, Kawasaki T, Umemura K, Shimamoto K. Down-regulation of metallothionein, a reactive oxygen scavenger, by the small GTPase OsRac1 in rice. Plant Physiol. 2004;135:1447–56.
CAS
PubMed
PubMed Central
Google Scholar
Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot. 2008;60:339–49.
PubMed
PubMed Central
Google Scholar
Steffens B, Sauter M. Epidermal cell death in rice is confined to cells with a distinct molecular identity and is mediated by ethylene and H2O2 through an autoamplified signal pathway. Plant Cell. 2009;21:184–96.
CAS
PubMed
PubMed Central
Google Scholar
Steffens B, Geske T, Sauter M. Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol. 2011;190:369–78.
CAS
PubMed
Google Scholar
Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol. 2011;190:351–68.
CAS
PubMed
Google Scholar
Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-ur-Rehman M, Abbas Z, Hannan F. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health. 2017;39:259–77.
CAS
PubMed
Google Scholar
Xu J, Sun JH, Du LG, Liu XJ. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol. 2012;196:110–24.
CAS
PubMed
Google Scholar
Zhou Q, Guo JJ, He CT, Shen C, Huang YY, Chen JX, Guo JH, Yuan JG, Yang ZY. Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of Pakchoi (Brassica chinensis L.) in Response to cadmium stress. Environ Sci Technol. 2016;50:6485–94.
CAS
PubMed
Google Scholar
Weber M, Trampczynska A, Clemens S. Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ. 2006;29:950–63.
CAS
PubMed
Google Scholar
He F, Liu QQ, Zheng L, Cui YQ, Shen ZG, Zheng LQ. RNA-Seq analysis of rice roots reveals the involvement of post-transcriptional regulation in response to cadmium stress. Front Plant Sci. 2016;6:1136.
Google Scholar
Xie Y, Ye S, Wang Y, Xu L, Zhu XW, Yang JL, Feng HY, Yu RG, Karanja B, Gong YQ, Liu LW. Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing. Front Plant Sci. 2015;6:202.
PubMed
PubMed Central
Google Scholar
Tang MF, Mao DH, Xu LW, Li DY, Song SH, Chen CY. Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings[J]. BMC Genomics. 2014;15:835.
PubMed
PubMed Central
Google Scholar
Rui HY, Zhang XX, Shinwari KI, Zheng LQ, Shen ZG. Comparative transcriptomic analysis of two Vicia sativa L. varieties with contrasting responses to cadmium stress reveals the important role of metal transporters in cadmium tolerance. Plant Soil. 2018;423:241–55.
CAS
Google Scholar
Yao YN, Xiao XL, Ou YB, Wu XL, Xu G. Root transcriptome analysis on the grape genotypes with contrast translocation pattern of excess manganese from root to shoot. Plant Soil. 2015;387:49–67.
CAS
Google Scholar
Chen YK, Zhi JK, Zhang H, Li J, Zhao QH, Xu JH. Transcriptome analysis of Phytolacca americana L. in response to cadmium stress. PLoS ONE. 2017;12:e184681.
Google Scholar
Peng H, He XJ, Gao J, Ma HX, Zhang ZM, Shen YO, Pan GT, Lin HJ. Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based approach. Biochem Bioph Res Com. 2015;464:1040–7.
CAS
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
CAS
PubMed
PubMed Central
Google Scholar
Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
PubMed
Google Scholar
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–202.
CAS
PubMed
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
PubMed
PubMed Central
Google Scholar
Wang DP, Zhang YB, Zhang Z, Zhu J, Yu J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinf. 2010;8:77–80.
CAS
Google Scholar
Morton BR, Gaut BS, Clegg MT. Evolution of alcohol dehydrogenase genes in the palm and grass families. Proc Natl Acad Sci USA. 1996;93:11735–9.
CAS
PubMed
PubMed Central
Google Scholar
Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Rivière N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Gouis JL, Feuillet C, Salse J. Cross-genome map based dissection of a nitrogen use efficiency ortho-meta QTL in bread wheat unravels concerted cereal genome evolution. Plant J. 2011;65:745–56.
CAS
PubMed
Google Scholar
Walley JW, Sartor RC, Shen ZX, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, Ecker JR, Briggs SP. Integration of omic networks in a developmental atlas of maize. Science. 2016;353:814–8.
CAS
PubMed
PubMed Central
Google Scholar
Van SS, Witters N, Meers E, Peene A, Michels E, Adriaensen K, Ruttens A, Vangronsveld J, Du LG, Wierinck I, Dael MV, Passel SV, Tack FMG. Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Environ Pollut. 2013;178:375–80.
Google Scholar
Meers E, Van SS, Adriaensen K, Ruttens A, Vangronsveld J, Du LG, Witters N, Thewys T, Tack FM. The use of bio-energy crops (Zea mays) for “phytoattenuation” of heavy metals on moderately contaminated soils: a field experiment. Chemosphere. 2010;78:35–41.
CAS
PubMed
Google Scholar
Xu XH, Liu CY, Zhao XY, Li RY, Deng WJ. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.). Bull Environ Contam Toxicol. 2014;93:618–24.
CAS
PubMed
Google Scholar
Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin XY, et al. Analysis of the genome sequence of the flowering plant, Arabidopsis thaliana. Nature. 2000;408:796–815.
CAS
Google Scholar
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 2002;296:92–100.
CAS
PubMed
Google Scholar
Masood A, Khan MI, Fatma M, Asgher M, Per TS, Khan NA. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses, and alleviation of cadmium stress in mustard. Plant Physiol Biochem. 2016;104:1–10.
CAS
PubMed
Google Scholar
Zhang SN. Effects of exogenous plant hormones on tolerance of rice and rape to cadmium and arsenic stress and its physiological mechanism. Chinese Academy of Agricultural Sciences; 2021.
Google Scholar