Zhang Z, Li C, Wu F, Ma R, Luan J, Yang F, et al. Genomic variations of the mevalonate pathway in porokeratosis. Elife. 2015;4:e06322.
Article
Google Scholar
Biswas A. Cornoid lamellation revisited: apropos of porokeratosis with emphasis on unusual clinicopathological variants. Am J Dermatopathol. 2015;37:145–55.
Article
Google Scholar
Takeichi T, Akiyama M. Familial or sporadic porokeratosis as an autoinflammatory keratinization disease. J Dermatol. 2019;46:e125–6.
Article
Google Scholar
Li M, Li Z, Wang J, Ni C, Sun Z, Wilson NJ, et al. Mutations in the mevalonate pathway genes in Chinese patients with porokeratosis. J Eur Acad Dermatol Venereol. 2016;30:1512–7.
Article
CAS
Google Scholar
Leng Y, Yan L, Feng H, Chen C, Wang S, Luo Y, et al. Mutations in mevalonate pathway genes in patients with familial or sporadic porokeratosis. J Dermatol. 2018;45:862–6.
Article
CAS
Google Scholar
Santoriello C, Zon LI. Hooked! Modeling human disease in zebrafish. J Clin Invest. 2012;122:2337–43.
Article
CAS
Google Scholar
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503.
Article
CAS
Google Scholar
Sugano Y, Neuhauss SC. Reverse genetics tools in zebrafish: a forward dive into endocrinology. Gen Comp Endocrinol. 2013;188:303–8.
Article
CAS
Google Scholar
Rossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, et al. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524:230–3.
Article
CAS
Google Scholar
El-Brolosy MA, Kontarakis Z, Rossi A, Kuenne C, Günther S, Fukuda N, et al. Genetic compensation triggered by mutant mRNA degradation. Nature. 2019;568:193–7.
Article
CAS
Google Scholar
Kuzuyama T, Seto H. Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88:41–52.
Article
CAS
Google Scholar
Buhaescu I, Izzedine H. Mevalonate pathway: a review of clinical and therapeutical implications. Clin Biochem. 2007;40:575–84.
Article
CAS
Google Scholar
Saito T, Sadoshima J. Molecular mechanisms of mitochondrial autophagy/mitophagy in the heart. Circ Res. 2015;116:1477–90.
Article
CAS
Google Scholar
van Bruggen R, Köker MY, Jansen M, van Houdt M, Roos D, Kuijpers TW, et al. Human NLRP3 inflammasome activation is Nox1-4 independent. Blood. 2010;115:5398–400.
Article
Google Scholar
Gkikas I, Palikaras K, Tavernarakis N. The role of mitophagy in innate immunity. Front Immunol. 2018;9:1283.
Article
Google Scholar
Tricarico PM, Marcuzzi A, Piscianz E, Monasta L, Crovella S, Kleiner G. Mevalonate kinase deficiency and neuroinflammation: balance between apoptosis and pyroptosis. Int J Mol Sci. 2013;14:23274–88.
Article
Google Scholar
Tricarico PM, Kleiner G, Valencic E, Campisciano G, Girardelli M, Crovella S, et al. Block of the mevalonate pathway triggers oxidative and inflammatory molecular mechanisms modulated by exogenous isoprenoid compounds. Int J Mol Sci. 2014;15:6843–56.
Article
Google Scholar
Longatti A, Tooze SA. Vesicular trafficking and autophagosome formation. Cell Death Differ. 2009;16:956–65.
Article
CAS
Google Scholar
van der Burgh R, Pervolaraki K, Turkenburg M, Waterham HR, Frenkel J, Boes M. Unprenylated RhoA contributes to IL-1β hypersecretion in mevalonate kinase deficiency model through stimulation of Rac1 activity. J Biol Chem. 2014;289:27757–65.
Article
Google Scholar
Qi XF, Zheng L, Lee KJ, Kim DH, Kim CS, Cai DQ, et al. HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway. Cell Death Dis. 2013;4:e518.
Article
CAS
Google Scholar
Cunha V, Santos MM, Moradas-Ferreira P, Ferreira M. Simvastatin effects on detoxification mechanisms in Danio rerio embryos. Environ Sci Pollut Res Int. 2016;23:10615–29.
Article
CAS
Google Scholar
D’Amico L, Scott IC, Jungblut B, Stainier DY. A mutation in zebrafish hmgcr1b reveals a role for isoprenoids in vertebrate heart-tube formation. Curr Biol. 2007;17:252–9.
Article
CAS
Google Scholar
Choi J, Mouillesseaux K, Wang Z, Fiji HD, Kinderman SS, Otto GW, et al. Aplexone targets the HMG-CoA reductase pathway and differentially regulates arteriovenous angiogenesis. Development. 2011;138:1173–81.
Article
CAS
Google Scholar
CasieChetty S, Rost MS, Enriquez JR, Schumacher JA, Baltrunaite K, Rossi A, et al. Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression. Dev Biol. 2017;424:147–61.
Article
CAS
Google Scholar
Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci U S A. 2006;103:6554–9.
Article
CAS
Google Scholar
Nasevicius A, Larson J, Ekker SG. Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast. 2000;17:294–301.
Article
CAS
Google Scholar
Johnson KE, Wilgus TA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv Wound Care (New Rochelle). 2014;3:647–61.
Article
Google Scholar
Pizzichetta MA, Canzonieri V, Massone C, Soyer HP. Clinical and dermoscopic features of porokeratosis of Mibelli. Arch Dermatol. 2009;45:91–2.
Google Scholar
Moscarella E, Longo C, Zalaudek I, Argenziano G, Piana S, Lallas A. Dermoscopy and confocal microscopy clues in the diagnosis of psoriasis and porokeratosis. J Am Acad Dermatol. 2013;69:e231–3.
Article
Google Scholar
Nicola A, Magliano J. Dermoscopy of disseminated superficial actinic porokeratosis. Actas Dermosifiliogr. 2017;108:e33–7.
Article
CAS
Google Scholar
Protopsaltis J, Katsantonis JC, Kokkoris S, Agapitos E, Lavranos G, Korantzopoulos P, et al. Isolated primary cardiac amyloidosis associated with porokeratosis of Mibelli. Int J Cardiol. 2008;126:e22–4.
Article
Google Scholar
Morcos PA, Vincent AC, Moulton JD. Gene editing versus morphants. Zebrafish. 2015;12:319.
Article
Google Scholar
Shen CS, Tabata K, Matsuki M, Goto T, Yokochi T, Yamanishi K. Premature apoptosis of keratinocytes and the dysregulation of keratinization in porokeratosis. Br J Dermatol. 2002;147:498–502.
Article
Google Scholar
Barros-Becker F, Lam PY, Fisher R, Huttenlocher A. Live imaging reveals distinct modes of neutrophil and macrophage migration within interstitial tissues. J Cell Sci. 2017;130:3801–8.
CAS
PubMed
PubMed Central
Google Scholar
Westerfield M. The zebrafish book: a guide for the laboratory use of zebrafish. 5th ed. Eugene: The University of Oregon Press; 2007.
Google Scholar
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253–310.
Article
CAS
Google Scholar
Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248:307–18.
Article
CAS
Google Scholar
Nasevicius A, Ekker SC. Effective targeted gene “knockdown” in zebrafish. Nat Genet. 2000;26:216–20.
Article
CAS
Google Scholar
Parng C, Ton C, Lin YX, Roy NM, McGrath P. A zebrafish assay for identifying neuroprotectants in vivo. Neurotoxicol Teratol. 2006;28:509–16.
Article
CAS
Google Scholar
Tucker B, Lardelli M. A rapid apoptosis assay measuring relative acridine orange fluorescence in zebrafish embryos. Zebrafish. 2007;4:113–6.
Article
Google Scholar