Abul-Soad AA, Al-Khayri JM. Date palm somatic embryogenesis from inflorescence explant. In: Jain S, Gupta P, editors. Step wise protocols for somatic embryogenesis of important woody plants. Forestry sciences, vol. 85. Berlin: Springer; 2018. p. 329–347.
Google Scholar
Ahmad R, Anjum MA, Malik W. Characterization and evaluation of mango germplasm through morphological, biochemical, and molecular markers focusing on fruit production: an overview. Mol Biotechnol. 2018;61:631.
Google Scholar
Al-Abdoulhadi IA, Dinar HA, Ebert G, Büttner C. Effect of salinity on leaf growth, leaf injury and biomass production in date palm (Phoenix dactylifera L.) cultivars. Indian J. Sci. Technol. 2011;17(3):120–8.
Google Scholar
Al Kharusi L, Assaha D, Al-Yahyai R, Yaish M. Screening of date palm (Phoenix dactylifera L.) cultivars for salinity tolerance. Forests. 2017;8:136.
Google Scholar
Al-Khateeb AA. Influence of different carbon sources and concentations on the root formation of date palm (Phoenix dactylifera L.) cv. Khanezi Zagazig J Agric Res. 2001;28:597–608.
Google Scholar
Alkhateeb A. Comparison effects of sucrose and date palm syrup on somatic embryogenesis of date palm (Phoenix dactylifera L.). Am J Biotechnol Biochem. 2008;4:19–23.
CAS
Google Scholar
Al-Khateeb A, Al-Khateeb S. Study and comparision of tolerance of different date palm (Phoenix dactylifera L.) cultivars to salinity under callus conditions. Eco Summit. 2007;2007:14.
Google Scholar
Al-Khateeb A, Al-Khateeb S. In Vitro role of hormones at multiplication stage of date palm (Phoenix dactylifera L.) cvs Khalas and Sukary. Res J Biotechnol. 2016;11:58–63.
CAS
Google Scholar
Al-Khateeb A, Al-Khateeb S. Effect of different combinations of growth hormones and its interaction on callogenesis. Res J Biotechnol. 2015;10:83–8.
Google Scholar
Al-Khateeb S. Effects of NaCl and Na2SO4 on growth, ion relations, water relations, and gas exchange of two Atriplex species. UK: University of Reading; 1997.
Google Scholar
Al-Khateeb SA, Al-Khateeb AA, Sattar MN, Mohmand AA, El-Beltagi HS. Assessment of somaclonal variation in salt-adapted and non-adapted regenerated date palm (Phoenix dactylifera L.). Fresen Environ Bull. 2019;28(5):3686–95.
CAS
Google Scholar
Al-Khayri JM. Somatic embryogenesis of date palm (Phoenix dactylifera L.) from shoot tip explants. In: Jain S, Gupta P, editors. Step wise protocols for somatic embryogenesis of important woody plants. Forestry sciences, vol. 85. Cham.: Springer; 2018. p. 231–244.
Google Scholar
Almeida DM, Oliveira MM, Saibo NJM. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetic Mol Biol. 2017;40(1):326–45.
CAS
Google Scholar
Alvarez I, Tomaro ML, Benavides MP. Changes in polyamines, proline and ethylene in sunflower calluses treated with NaCl. Plant Cell Tissue Organ Cult. 2003;74:51–9.
CAS
Google Scholar
Arif IA, Bakir MA, Khan HA, Ahamed A, Al Farhan AH, Al Homaidan AA, Al Sadoon M, Bahkali AH, Shobrak M. A simple method for DNA extraction from mature date palm Leaves: Impact of sand grinding and composition of lysis buffer. Int J Mol Sci. 2010;11:3149–57.
CAS
PubMed
PubMed Central
Google Scholar
Benderradji L, Bouzerzour H, Ykhlef N, Djekoun A, Kellou K. Réponse à la culture in vitro de trois variétés de l’olivier (Olea europaea L.). Sci Technol. 2007;26:27–322.
Google Scholar
Bertaccini A, Paltrinieri S, Contaldo N. Standard detection protocol: PCR and RFLP analyses based on 16S rRNA gene. In: Musetti R, Pagliari L, editors. Phytoplasmas. Methods in molecular biology, vol. 1875. New York: Humana Press; 2019.
Google Scholar
Bradford KJ, Hsiao TC. Physiological responses to moderate water stress. Physiological plant ecology II. Berlin: Springer; 1982. p. 263–324.
Google Scholar
Caboni E, Anselmi S, Donato E, Manes F. In vitro selection of actinidia deliciosa clones tolerant to nacl and their molecular and in vivo ecophysiological characterisation. Acta Hortic. 2003;618:77–83.
CAS
Google Scholar
Chen Z, Newman I, Zhou M, Mendham N, Zhang G, Shabala S. Screening plants for salt tolerance by measuring K+ flux: a case study for barley. Plant Cell Environ. 2005;28:1230–46.
CAS
Google Scholar
Colmer TD, Flowers TJ, Munns R. Use of wild relatives to improve salt tolerance in wheat. J Exp Bot. 2006;57:1059–78.
CAS
Google Scholar
Dennis T, Sreejesh K. Callus induction and plant regeneration from cotyledonary explants of ash gourd (Benincasa hispida L.). Sci Horticult. 2004;100(1):359–67.
Google Scholar
Egea I, Pineda B, Ortíz-Atienza A, et al. The SlCBL10 calcineurin B-like protein ensures plant growth under salt stress by regulating Na+ and Ca2+ homeostasis. Plant Physiol. 2018;176(2):1676–93.
CAS
PubMed
Google Scholar
Fites JA, Teskey RO. CO 2 and water vapor exchange of Pinus taeda in relation to stomatal behavior: test of an optimization hypothesis. Can J For Res. 1988;18:150–7.
Google Scholar
Gandonou C, Abrini J, Idaomar M, Skali Senhaji N. Response of sugarcane (Saccharum sp.) varieties to embryogenic callus induction and in vitro salt stress. Afr J Biotechnol. 2005;4:350–4.
CAS
Google Scholar
Ganeshan S, Båga M, Harvey BL, Rossnagel BG, Scoles GJ, Chibbar RN. Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeum vulgare). Plant Cell Tissue Organ Cult. 2003;73:57–64.
CAS
Google Scholar
Ganie SA, Molla KA, Henry RJ, et al. Advances in understanding salt tolerance in rice. Theor Appl Genet. 2019;132:851–70.
CAS
PubMed
Google Scholar
Genc Y, McDonald G, Tester M. Reassessment of tissue Na + concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ. 2007;30:1486–98.
CAS
PubMed
Google Scholar
Hadrami IE, Hadrami AE. Breeding date palm. Breeding plantation tree crops: tropical species. New York: Springer; 2009. p. 191–216.
Google Scholar
Joshi P, Dhawan V. Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol Plant. 2007;51:22–6.
CAS
Google Scholar
Kautz B, Hunsche M, Noga G. Salinity-induced changes of multiparametric fluorescence indices of tomato leaves. Agriculture. 2014;4:132–46.
Google Scholar
Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech. 2016;6(1):54.
PubMed
PubMed Central
Google Scholar
Krivosheeva AB, Varlamova TV, Yurieva NO, Sobolkova GI, Kholodova VP, Belyaev DV. Potato transformation with the HvNHX3 gene and the improvement of transformant salt tolerance. Russ. J. Plant Physiol. 2014;61:792–800.
CAS
Google Scholar
Kumar N, Modi AR, Singh AS, Gajera BB, Patel AR, Patel MP, Subhash N. Assessment of genetic fidelity of micropropagated date palm (Phoenix dactylifera L.) plants by RAPD and ISSR markers assay. Physiol Mol Biol Plants. 2010;16:207–13.
PubMed
PubMed Central
Google Scholar
Lakshmanan V, Reddampalli VS, Neelwarne B. Molecular analysis of genetic stability in long-term micropropagated shoots of banana using RAPD and ISSR markers. Electron J Biotechnol. 2007;10:106–13.
Google Scholar
Levy D, Veilleux RE. Adaptation of potato to high temperatures and salinity-a review. Am J Potato Res. 2007;84:487–506.
Google Scholar
Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun. 2019;495(1):286–91.
Google Scholar
López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot. 2008;62:176–84.
Google Scholar
Lucia EHD, Whitehead D, Clearwater MJ. The relative limitation of photosynthesis by mesophyll conductance in co-occurring species in a temperate rainforest dominated by the conifer Dacrydium cupressinum. Funct Plant Biol. 2003;30:1197.
PubMed
Google Scholar
Marashi SS, Hajilou J, Tabatabaei SJ, Nahandi FZ, Toorchi M. Screening date palm cultivars for salinity tolerance using physiological indices. Pak J Bot. 2017;49:413–9.
Google Scholar
Martinez V, Nieves-Cordones M, Lopez-Delacalle M. Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules. 2018;23(3):535.
PubMed Central
Google Scholar
Meloni DA, Oliva MA, Martinez CA, Cambraia J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot. 2003;49:69–766.
CAS
Google Scholar
Moghaieb R, Abdel-Hadi A, Ahmed M. Genetic stability among date palm plantlets regenerated from petiole explants. Afr J Biotechnol. 2011;10:14311–8.
CAS
Google Scholar
Mohamed MA, Harris PJC, Henderson J. In vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Sci. 2000;159:213–22.
CAS
PubMed
Google Scholar
Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–81.
CAS
PubMed
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:12.
Google Scholar
Qiu N, Lu Q, Lu C. Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol. 2003;159:479–86.
CAS
Google Scholar
Rasheed A, Xia X. From markers to genome-based breeding in wheat. Theor Appl Genet. 2019;132:767–84.
CAS
PubMed
Google Scholar
Rastogi J, Siddhant B, Sharma, B. Somaclonal variation: A new dimension for sugarcane improvement. GERF Bull Biosci. 2015;6:5–10.
Google Scholar
Redondo-Gómez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque CJ, de Cires A, Luque T, Davy AJ, Enrique Figueroa M. Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plant. 2006;128:116–24.
Google Scholar
Roy SJ, Negrão S, Tester M. Salt resistant crop plants. Curr Opin Biotechnol. 2014;26:115–24.
CAS
PubMed
Google Scholar
SAS, 2011. SAS/STAT 9.3 User’s Guide. SAS Inst. Inc., Cary, NC.
Sattar MN, Iqbal Z, Tahir MN, Shahid MS, Khurshid M, Al-Khateeb AA, Al-Khateeb SA. CRISPR/Cas9: A practical approach in date palm genome editing. Front Plant Sci. 2017;8:1469.
PubMed
PubMed Central
Google Scholar
Shabala S, Cuin TA. Potassium transport and plant salt tolerance. Physiol Plant. 2008;133:651.
CAS
PubMed
Google Scholar
Steel R, Torrie J. Principals and procedures of statistics: a biometric approach. New York: McGraw-Hill; 1980.
Google Scholar
Sudhaa GS, Ramesh P, Sekhar AC, Krishna TS, Bramhachari PV, Riazunnisa K. Genetic diversity analysis of selected Onion (Allium cepa L.) germplasm using specific RAPD and ISSR polymorphism markers. Biocat Agric Biotech. 2019;17:110–8.
Google Scholar
von Caemmerer S, Farquhar GD. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta. 1981;153:376–87.
Google Scholar
Wahid A, Perveen M, Gelani S, Basra SMA. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol. 2007;164:283–94.
CAS
PubMed
Google Scholar
Yaish MW, Kumar PP. Salt tolerance research in date palm tree (Phoenix dactylifera L.), past, present, and future perspectives. Front. Plant Sci. 2015;6:348.
PubMed
PubMed Central
Google Scholar
Yaish MW, Patankar HV, Assaha DVM, Zheng Y, Al-Yahyai R, Sunkar R. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. BMC Genomics. 2017;18:246.
PubMed
PubMed Central
Google Scholar
Zale JM, Borchardt-Wier H, Kidwell KK, Steber CM. Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell Tissue Organ Cult. 2004;76:277–81.
Google Scholar