Britto JS de, Forti LC, Oliveira MA de, Zanetti R, Wilcken CF, Zanuncio J cola, et al. Use of alternatives to PFOS, its salts and PFOSF for the control of leaf-cutting ants Atta and Acromyrmex. Int J Res Environ Stud. 2016;3:11–92. http://www.bluepenjournals.org/ijres/pdf/2016/May/de_Britto_et_al.pdf.
Fernandez F, Castro-Huertas V, Serna F. Hormigas cortadoras de hojas de Colombia: Acromyrmex & Atta (Hymenoptera: Formicidae). Primera ed. Fauna de Colombia. Bogota-Colombia: Universidad Nacional de Colombia; 2015. 253–70. http://ciencias.bogota.unal.edu.co/fileadmin/content/icn/documentos/2015_Hormigas_Atta___Acromyrmex_Colombia.pdf.
Zanetti R, Zanuncio J, Santos J, da Silva W, Ribeiro G, Lemes P. An overview of integrated management of leaf-cutting ants (Hymenoptera: Formicidae) in Brazilian Forest plantations. Forests. 2014;5(3):439–54.
Article
Google Scholar
Dominah GA, McMinimy RA, Kallon S, Kwakye GF. Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington’s disease. Neurotoxicology. 2017;60:54–69. https://doi.org/10.1016/j.neuro.2017.03.004.
Article
CAS
PubMed
Google Scholar
Villar D, Gutiérrez J, Piedrahita D, Rodríguez-Durán A, Cortés-Vecino JA, Góngora-Orjuela A, et al. In vitro resistance to topical acaricides of the cattle tick Rhipicephalus (Boophilus) microplus from four regions of Colombia. Rev CES Med Vet y Zootec. 2016;11(3):58–70.
Article
Google Scholar
Qu H, Ma RX, Liu DH, Gao J, Wang F, Zhou ZQ, et al. Environmental behavior of the chiral insecticide fipronil: enantioselective toxicity, distribution and transformation in aquatic ecosystem. Water Res. 2016;105:138–46. https://doi.org/10.1016/j.watres.2016.08.063.
Article
CAS
PubMed
Google Scholar
Michel N, Freese M, Brinkmann M, Pohlmann JD, Hollert H, Kammann U, et al. Fipronil and two of its transformation products in water and European eel from the river Elbe. Sci Total Environ. 2016;568:171–9. https://doi.org/10.1016/j.scitotenv.2016.05.210.
Article
CAS
PubMed
Google Scholar
Qu H, Ma RX, Liu DH, Jing X, Wang F, Zhou ZQ, et al. The toxicity, bioaccumulation, elimination, conversion of the enantiomers of fipronil in Anodonta woodiana. J Hazard Mater. 2016;312:169–74. https://doi.org/10.1016/j.jhazmat.2016.03.063.
Article
CAS
PubMed
Google Scholar
Ejaz M, Afzal MBS, Shabbir G, Serrão JE, Shad SA, Muhammad W. Laboratory selection of chlorpyrifos resistance in an Invasive Pest, Phenacoccus solenopsis (Homoptera: Pseudococcidae): cross-resistance, stability and fitness cost. Pestic Biochem Physiol. 2017;137:8–14. https://doi.org/10.1016/j.pestbp.2016.09.001.
Article
CAS
PubMed
Google Scholar
Zhang B, Kong F, Wang H, Gao X, Zeng X, Shi X. Insecticide induction of O-demethylase activity and expression of cytochrome P450 genes in the red imported fire ant (Solenopsis invicta Buren). J Integr Agric. 2016;15(1):135–44.
Article
CAS
Google Scholar
Diaz Napal GN, Buffa LM, Nolli LC, Defagó MT, Valladares GR, Carpinella MC, et al. Screening of native plants from central Argentina against the leaf-cutting ant Acromyrmex lundi (Guérin) and its symbiotic fungus. Ind Crops Prod. 2015;76:275–80. https://doi.org/10.1016/j.indcrop.2015.07.001.
Article
Google Scholar
Morais WCC, Lima MAP, Zanuncio JC, Oliveira MA, Bragança MAL, Serrão JE, et al. Extracts of Ageratum conyzoides, Coriandrum sativum and Mentha piperita inhibit the growth of the symbiotic fungus of leaf-cutting ants. Ind Crops Prod. 2015;65:463–6.
Article
CAS
Google Scholar
Stenberg JA, Heil M, Åhman I, Björkman C. Optimizing crops for biocontrol of pests and disease. Trends Plant Sci. 2015;20(11):698–712. https://doi.org/10.1016/j.tplants.2015.08.007.
Article
CAS
PubMed
Google Scholar
Barelli L, Moonjely S, Behie SW, Bidochka MJ. Fungi with multifunctional lifestyles: endophytic insect pathogenic fungi. Plant Mol Biol. 2016;90(6):657–64.
Article
CAS
Google Scholar
Kiong DS, Choon F, King PJ. Isolation and physical characterization of hydrophobin-like proteins (HLP) from aerial conidia of metarhizium. Am J Biochem Biotechnol Orig. 2015;11(2):66–72.
Article
CAS
Google Scholar
Aw KMS, Hue SM. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. J Fungi (Basel). 2017;3(2):30.
Article
Google Scholar
Wang C, Wang S. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu Rev Entomol. 2017;62:73–90.
Article
CAS
Google Scholar
Wang C, St. Leger RJ. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci. 2006;103(17):6647–52.
Article
CAS
Google Scholar
Ortiz-urquiza A, Keyhani NO. Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects. 2013;4:357–74.
Article
Google Scholar
Lu HL, St. Leger RJ. Chapter 7—Insect immunity to entomopathogenic fungi. In: Lovett B, St. Leger RJ, editors. Genetics and molecular biology of entomopathogenic fungi. Cambridge: Academic Press; 2016. p. 251–85.
Chapter
Google Scholar
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Chapter 9—Entomopathogenic fungi: new insights into host–pathogen interactions. In: Lovett B, St. Leger RJ, editors. Genetics and molecular biology of entomopathogenic fungi. Cambridge: Academic Press; 2016. p. 307–64.
Chapter
Google Scholar
Gajera H, Domadiya R, Patel S, Kapopara M, Golakiya B. Molecular mechanism of Trichoderma as bio-control agents against phytopathogen system—a review. Curr Res Microbiol Biotechnol. 2014;1(4):133–42.
Google Scholar
Infante D, Martínez B, González N, Yusimy R. Artículo reseña fitopatógenos Trichoderma mechanisms of action against phytopathogen fungi. Rev Protección Veg. 2009;24(1):14–21.
Google Scholar
Steyaert JM, Ridgway HJ, Elad Y, Stewart A. Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. N Zeal J Crop Hortic Sci. 2003;31(4):281–91.
Article
Google Scholar
Abbas A, Jiang D, Fu Y. Trichoderma Spp. as antagonist of Rhizoctonia solani. J Plant Pathol Microbiol. 2017;8:3.
Google Scholar
Olmedo V, Casas-Flores S. Chapter 32—Molecular mechanisms of biocontrol in Trichoderma spp. and their applications in agriculture. Biotechnology and biology of Trichoderma. Amsterdam: Elsevier; 2014. p. 429–54.
Google Scholar
Lacey LA. Chapter 1—Entomopathogens used as microbial control agents BT—microbial control of insect and mite pests. Microbial control of insect and mite pests from theory to practice. Cambridge: Academic Press; 2017. p. 3–12.
Chapter
Google Scholar
Greenfield M, Gómez-Jiménez MI, Ortiz V, Vega FE, Kramer M, Parsa S. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation. Biol Control. 2016;95:40–8.
Article
Google Scholar
Jirakkakul J, Roytrakul S, Srisuksam C, Swangmaneecharern P, Kittisenachai S, Jaresitthikunchai J, et al. Culture degeneration in conidia of Beauveria bassiana and virulence determinants by proteomics. Fungal Biol. 2017;122:156–71.
Article
Google Scholar
Miranda-Hernández F, Angel-Cuapio A, Loera-Corral O. 33—Production of fungal spores for biological control A2—Pandey, Ashok. In: Negi S, Soccol CRBT-CD in B and B, editors. Amsterdam: Elsevier; 2017. p. 757–79.
Barnett HL, Hunter B. Illustrated genera of imperfect fungi, 4th edn. Amer Phytopathological Society; 1998. p. 1–59.
Fernández F, Trujillo J, Lopez I, Pascoli M, Cuervo R. Bioformulado de Beauveria bassiana (ATCC MYA-4886) y Trichoderma lignorum (ATCC-8751) como biocontrolador de Atta cephalotes * Bioinsecticide study for controlling the carrier ant (Atta cephalotes), using filamentous fungi spores Beauveria bassiana. Entramado. 2019;15(1):288–96.
Article
Google Scholar
Lemus Y, Roman G, Cuervo R, Durán J, Antonio J, Zuluaga C, et al. Determinación de la factibilidad del hongo Metarhizium anisopliae para ser usado como control biológico de la hormiga arriera (Atta cephalotes). Rev científica Guillermo Ockham. 2008;6(1):91–8.
Google Scholar
Sun M, Ren Q, Guan G, Li Y, Han X, Ma C, et al. Effectiveness of Beauveria bassiana sensu lato strains for biological control against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in China. Parasitol Int. 2013;62(5):412–5.
Article
Google Scholar
Lopez E, Orduz S. Metarhizium anisopliae and Trichoderma viride for control of nests of the fungus-growing ant, Atta cephalotes. Biol Control. 2003;27(2):194–200.
Article
Google Scholar
Lugo MA, Lugo MA, Crespo EM, Cafaro M. Hongos asociados con dos poblaciones de Acromyrmex lobicornis (FormIcIdae) de san luis, argentIna MÓNICA. Bol Soc Argent Bot. 2013;48(1):5–15.
Google Scholar
Montoya-lerma J, Giraldo-echeverri C, Armbrecht I, Farji-Brener A, Calle Z. Leaf-cutting ants revisited: towards rational management and control. Int J Pest Manag. 2012;58(3):37–41.
Article
Google Scholar
Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR. Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J. 2007;37(1):1–20.
Article
Google Scholar
do Nascimento MO, de Almeida Sarmento R, dos Santos GR, de Oliveira CA, de Souza DJ. Antagonism of Trichoderma isolates against Leucoagaricus gongylophorus (Singer) Möller. J Basic Microbiol. 2017;57(8):699–704. https://doi.org/10.1002/jobm.201600755.
Article
CAS
PubMed
Google Scholar
Ortiz A, Orduz S. In vitro evaluation of Trichoderma and Gliocladium antagonism against the symbiotic fungus of the leaf-cutting ant Atta cephalotes. Mycopathol. 2001;150(150):53–60.
Article
CAS
Google Scholar
Andreadis SS, Cloonan KR, Bellicanta GS, Paley K, Pecchia J, Jenkins NE. Efficacy of Beauveria bassiana formulations against the fungus gnat Lycoriella ingenua. Biol Control. 2016;103:165–71.
Article
CAS
Google Scholar
Ullah MS, Lim UT. Laboratory evaluation of the effect of Beauveria bassiana on the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J Invertebr Pathol. 2017;148:102–9.
Article
Google Scholar
Zindel R, Gottlieb Y, Aebi A. Arthropod symbioses: a neglected parameter in pest- and disease-control programmes. J Appl Ecol. 2011;48:864–72.
Article
Google Scholar
Dillon RJ, Dillon VM, Reynolds SE, Samuels RI. Ocurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol Lett. 2004;239:319–23.
Article
Google Scholar
Li J, Guo Q, Lin M, Jiang L, Ye J, Chen D, et al. Evaluation of a new entomopathogenic strain of Beauveria bassiana and a new field delivery method against Solenopsis invicta. PLoS ONE. 2016;11(6):4–11.
Google Scholar
Mighell K, Van Bael SA. Selective elimination of microfungi in leaf-cutting ant gardens. Fungal Ecol. 2016;24:15–20.
Article
Google Scholar
de los Santos-Villalobos S, Guzmán-Ortiz DA, Gómez-Lim MA, Délano-Frier JP, de Folter S, Sánchez-García P, et al. Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biol Control. 2013;64(1):37–44. https://doi.org/10.1016/j.biocontrol.2012.10.006.
Article
Google Scholar