Alberdi M, Bravo LA, Gutiérrez A, Gidekel M, Corcuera LJ. Ecophysiology of Antarctic vascular plants. Physiol Plant. 2002;115(4):479–86.
Article
CAS
Google Scholar
Zuñiga GE, Alberdi M, Corcuera LJ. Non-structural carbohydrates in Deschampsia Antarctica desv. from South Shetland Islands, maritime antarctic. Environ Exp Bot. 1996;36(4):393–9.
Article
Google Scholar
Yin X, Liu X, Sun L, Zhu R, Xie Z, Wang Y. A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Sci Total Environ. 2006;371(1):252–7.
Article
CAS
Google Scholar
Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 2011;180(2):169–81.
Article
CAS
Google Scholar
Dubey RS. Metal Toxicity, oxidative stress and antioxidative defense system in plants. In: Reactive oxygen species and antioxidants in higher plants. Science Publishers; 2010. p. 177–203.
Sharma SS, Dietz K-J. The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 2009;14(1):43–50.
Article
CAS
Google Scholar
Braconi D, Bernardini G, Santucci A. Linking protein oxidation to environmental pollutants: redox proteomic approaches. J Proteomics. 2011;74(11):2324–37.
Article
CAS
Google Scholar
Cobbett CS. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol. 2000;3(3):211–6.
Article
CAS
Google Scholar
Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006;88(11):1707–19.
Article
CAS
Google Scholar
Conte SS, Chu HH, Chan-Rodriguez D, Punshon T, Vasques KA, Salt DE, Walker EL. Arabidopsis thaliana Yellow Stripe1-Like4 and Yellow Stripe1-Like6 localize to internal cellular membranes and are involved in metal ion homeostasis. Front Plant Sci. 2013;4:283.
Article
CAS
Google Scholar
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55(1):373–99.
Article
CAS
Google Scholar
Ravet K, Pilon M. Copper and iron homeostasis in plants: the challenges of oxidative stress. Antioxid Redox Signal. 2012;19(9):919–32.
Article
Google Scholar
Khatun S, Ali MB, Hahn E-J, Paek K-Y. Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot. 2008;64(3):279–85.
Article
CAS
Google Scholar
Noctor G, Foyer CH. Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol. 1998;49(1):249–79.
Article
CAS
Google Scholar
Lombardi L, Sebastiani L. Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci. 2005;168(3):797–802.
Article
CAS
Google Scholar
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10):490–8.
Article
CAS
Google Scholar
Hsu B-D, Lee J-Y. Toxic effects of copper on photosystem II of Spinach chloroplasts. Plant Physiol. 1988;87(1):116–9.
Article
CAS
Google Scholar
Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10.
Article
CAS
Google Scholar
Van den Ende W, Valluru R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot. 2009;60(1):9–18.
Article
Google Scholar
Iglesia-Turiño S, Febrero A, Jauregui O, Caldelas C, Araus JL, Bort J. Detection and quantification of unbound phytochelatin 2 in plant extracts of Brassica napus grown with different levels of mercury. Plant Physiol. 2006;142(2):742–9.
Article
Google Scholar
Zúñiga GE, Zamora P, Ortega M, Obrecht A. Short Note: Micropropagation of Antarctic Colobanthus quitensis. Antarct Sci. 2009;21(02):149–50.
Article
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
Article
CAS
Google Scholar
Ross C, Puglisi MP, Paul VJ. Antifungal defenses of seagrasses from the Indian River Lagoon, Florida. Aquat Bot. 2008;88(2):134–41.
Article
CAS
Google Scholar
Ederli L, Pasqualini S, Batini P, Antonielli M. Photoinhibition and oxidative stress: effects on xanthophyll cycle, scavenger enzymes and abscisic acid content in tobacco plants. J Plant Physiol. 1997;151(4):422–8.
Article
CAS
Google Scholar
Wellburn AR. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994;144(3):307–13.
Article
CAS
Google Scholar
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.
Article
CAS
Google Scholar
Murphy TM, Vu H, Nguyen T. The superoxide synthases of rose cells: comparison of assays. Plant Physiol. 1998;117(4):1301–5.
Article
CAS
Google Scholar
Pinhero RG, Rao MV, Paliyath G, Murr DP, Fletcher RA. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol. 1997;114(2):695–704.
Article
CAS
Google Scholar
Zhao S, Blumwald E. Changes in oxidation-reduction state and antioxidant enzymes in the roots of jack pine seedlings during cold acclimation. Physiol Plant. 1998;104(1):134–42.
Article
CAS
Google Scholar
Schaedle M, Bassham JA. Chloroplast glutathione reductase. Plant Physiol. 1977;59(5):1011–2.
Article
CAS
Google Scholar
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28(1):25–30.
Article
CAS
Google Scholar
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996;239(1):70–6.
Article
CAS
Google Scholar
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult. 1965;16(3):144–58.
CAS
Google Scholar
Zhang Z, Gao X, Qiu B. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry. 2008;69(4):911–8.
Article
CAS
Google Scholar
Liu K-L, Shen L, Wang J-Q, Sheng J-P. Rapid inactivation of chloroplastic ascorbate peroxidase is responsible for oxidative modification to Rubisco in tomato (Lycopersicon esculentum) under cadmium stress. J Integr Plant Biol. 2008;50(4):415–26.
Article
CAS
Google Scholar
Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot. 2002;53(372):1351–65.
PubMed
Google Scholar
Mazhoudi S, Chaoui A, Habib Ghorbal M, El Ferjani E. Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum, Mill.). Plant Sci. 1997;127(2):129–37.
Article
CAS
Google Scholar
Pietta PG, Simonetti P, Mauri P. Antioxidant activity of selected medicinal plants. JAgric Food Chem. 1998;46:4487–90.
Article
CAS
Google Scholar
Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012;196:67–76.
Article
CAS
Google Scholar
Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53(372):1331–41.
Article
CAS
Google Scholar
Flores-Cáceres ML, Hattab S, Hattab S, Boussetta H, Banni M, Hernández LE. Specific mechanisms of tolerance to copper and cadmium are compromised by a limited concentration of glutathione in alfalfa plants. Plant Sci. 2015;233:165–73.
Article
Google Scholar
Teisseire H, Guy V. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Sci. 2000;153(1):65–72.
Article
CAS
Google Scholar
Ali MB, Singh N, Shohael AM, Hahn EJ, Paek K-Y. Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress. Plant Sci. 2006;171(1):147–54.
Article
CAS
Google Scholar
Kováčik J, Klejdus B, Hedbavny J, Bačkor M. Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae). Plant Sci. 2010;178(3):307–11.
Article
Google Scholar
Chatzidimopoulos M, Ganopoulos I, Vellios E, Madesis P, Tsaftaris A, Pappas AC. Development of a two-step high-resolution melting (HRM) analysis for screening sequence variants associated with resistance to the QoIs, benzimidazoles and dicarboximides in airborne inoculum of Botrytis cinerea. FEMS Microbiol Lett. 2014;360(2):126–31.
Article
CAS
Google Scholar
Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant. 1997;100(2):241–54.
Article
CAS
Google Scholar
Foyer CH, Noctor G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 2005;28(8):1056–71.
Article
CAS
Google Scholar
Xiang C, Oliver DJ. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell. 1998;10(9):1539–50.
Article
CAS
Google Scholar
Mithöfer A, Schulze B, Boland W. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett. 2004;566(1–3):1–5.
Article
Google Scholar
Yruela I. Copper in plants: acquisition, transport and interactions. Funct Plant Biol. 2009;36(5):409–30.
Article
CAS
Google Scholar
Argyroudi-Akoyunoglou JH, Akoyunoglou G. Photoinduced changes in the chlorophyll a to chlorophyll b ratio in young bean plants. Plant Physiol. 1970;46(2):247–9.
Article
CAS
Google Scholar
Pietta P-G. Flavonoids as Antioxidants. J Nat Prod. 2000;63(7):1035–42.
Article
CAS
Google Scholar
López M, Martı́nez F, Del Valle C, Ferrit M, Luque R. Study of phenolic compounds as natural antioxidants by a fluorescence method. Talanta. 2003;60(2–3):609–16.
Article
Google Scholar
Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem. 2001;49(11):5165–70.
Article
CAS
Google Scholar
Kanner J, Frankel E, Granit R, German B, Kinsella JE. Natural antioxidants in grapes and wines. J Agric Food Chem. 1994;42(1):64–9.
Article
CAS
Google Scholar
Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE. Soluble sugars metabolism, sensing and abiotic stress. A complex network in the life of plants. Plant Signal Behav. 2009;4(5):388–93.
Article
CAS
Google Scholar
Pourcel L, Routaboul J-M, Cheynier V, Lepiniec L, Debeaujon I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci. 2007;12(1):29–36.
Article
CAS
Google Scholar
ElSayed AI, Rafudeen MS, Golldack D. Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress. Plant Biology. 2014;16(1):1–8.
Article
CAS
Google Scholar
Costa G, Spitz E. Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci. 1997;128(2):131–40.
Article
CAS
Google Scholar
Stobrawa K, Lorenc-Plucińska G. Changes in carbohydrate metabolism in fine roots of the native European black poplar (Populus nigra L.) in a heavy-metal-polluted environment. Sci Total Environ. 2007;373(1):157–65.
Article
CAS
Google Scholar
Pennycooke JC, Jones ML, Stushnoff C. Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol. 2003;133(2):901–9.
Article
CAS
Google Scholar
Nishizawa-Yokoi A, Yabuta Y, Shigeoka S. The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signal Behav. 2008;3(11):1016–8.
Article
Google Scholar
Tausz M, Šircelj H, Grill D. The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exp Bot. 2004;55(404):1955–62.
Article
CAS
Google Scholar
Grill E, Gekeler W, Winnacker EL, Zenk HH. Homo-phytochelatins are heavy metal-binding peptides of homo-glutathione containing Fabales. FEBS Lett. 1986;205(1):47–50.
Article
CAS
Google Scholar
Cobbett C, Goldsbrough P. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol. 2002;53(1):159–82.
Article
CAS
Google Scholar
de Knecht JA, van Baren N, Ten Bookum WM, Wong Fong Sang HW, Koevoets PLM, Schat H, Verkleij JAC. Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Sci. 1995;106(1):9–18.
Article
Google Scholar
Martı́nez CE, Motto HL. Solubility of lead, zinc and copper added to mineral soils. Environ Pollut. 2000;107(1):153–8.
Article
Google Scholar
Rosselli W, Keller C, Boschi K. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil. 2003;256(2):265–72.
Article
CAS
Google Scholar
de Knecht JA, van Dillen M, Koevoets P, Schat H, Verkleij J, Ernst W. Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris (chain length distribution and sulfide incorporation). Plant Physiol. 1994;104(1):255–61.
Article
Google Scholar
De Vos CHR, Vonk MJ, Vooijs R, Schat H. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol. 1992;98(3):853–8.
Article
Google Scholar
Fernandes JC, Henriques FS. Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev. 1991;57(3):246–73.
Article
Google Scholar