Geiser M, Baumann M, Cruz–Orive Hof V, Waber U, Gehr P. The effect of particle inhalation on macrophage number and phagocytic activity in the intrapulmonary conducting airways. Am J Respir Cell Mol Biol. 2002;10:594–603.
Article
Google Scholar
Kazuhiro A, Shigekazu S, Takafumi S, Kingo C, Hirotoshi N. Antiinflammatory roles of peroxisome proliferator activated receptor γ in human alveolar macrophages. Am J Respir Crit Care Med. 2004;169:195–200.
Article
Google Scholar
Green GM, Kass EH. The role of alveolar macrophages in the clearance of bacteria from the lung. J Exp Med. 1964;119:167–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brain JD. Macrophages in the respiratory tract. Am Physiol Soc. 1985;1:447–71.
Google Scholar
Maina JN. Some recent advances on the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives. Biol Rev Camb Philos Soc. 2002;77:97–152.
Article
CAS
PubMed
Google Scholar
Maina JM, Abdalla MA, Kings AS. Light microscopic morphometry of the lungs of 19 avian species. Acta Anat. 1982;112:264–70.
Article
CAS
PubMed
Google Scholar
Bezuidenhout AJ, Groenewalid HB, Soley JT. An anatomical study of the respiratory air sacs in ostriches. Ondersterproot J Vet Res. 2000;66:317–25.
Google Scholar
Prosser C. Comparative animal physiology. Philadelphia: WB Saunders; 1950.
Google Scholar
Maina JN, Cowley HM. Ultra-structural characterization of the pulmonary cellular defenses in the lung of a bird, the rock dove, Columbia livia. R Soc Lond. 1998;256:1567–72.
Article
Google Scholar
Brain JD, Frank NR. Recovery of free cells from rat lungs by repeated washings. J Appl Physiol. 1968;25:63–9.
CAS
PubMed
Google Scholar
Toth TE, Siegel PB. Cellular defense for the avian respiratory tract: paucity of free residing macrophages in the normal chicken. Avian Disease. 1986;30:67–75.
Article
CAS
Google Scholar
Toth TE, Siegel PB, Veit H. Cellular defense of the avian respiratory system-influx of phagocytes: elicitation versus activation. Avian Disease. 1987;30:67–75.
Article
Google Scholar
Ficken MD, Edwards JF, Lay JC. Induction, collection, and partial characterization of induced respiratory macrophages of the turkey. Avian Disease. 1986;30:766–71.
Article
CAS
Google Scholar
Ficken MD, Barnes HJ. Acute air sacculitis in turkey inoculated with Pasteurella multocida. Avian Disease. 1989;26:231–7.
CAS
Google Scholar
Mutua PM, Gicheru MM, Makanya AN, Kiama SG. Comparative quantitative and qualitative attributes of free surface respiratory macrophages in the duck and rabbit. Int J Morphol. 2011;2:353–62.
Article
Google Scholar
Currie RJW. Ascites in poultry: recent investigations. Avian Pathol. 1999;28:313–26.
Article
CAS
PubMed
Google Scholar
Kilka E, Scheuermann MHA, Lasseel DG, Bazant-ova I, Switka A. Pulmonary macrophages in birds (barn owl, Tyto tyto alba), domestic fowl (Gallus gallus f domesticus), quail (Cotunix cotunix), and pigeons (Columbia livia). Anat Rec. 1996;246:97–107.
Google Scholar
Toth TE, Pyle RH, Caceci T, Siegel PB, Ochs D. Cellular defense of the avian respiratory system: influx and nonopsonic phagocytosis by respiratory phagocytes activated by Pasteurella multocida. Infect Immunol. 1988;56:1171–9.
CAS
Google Scholar
Mensah GA, Brain JD. Deposition and clearance of inhaled aerosol in the respiratory tract of chickens. J Appl Physiol. 1982;53:1423–8.
CAS
PubMed
Google Scholar
Pastor LM, Calvo A (1995) The extrapulmonary airways in birds. In: Histology, ultrastructure and immunohistochemistry of the respiratory organs on non mammalian vertebrates. Murcia University Press, 159-173.
Lopez J (1995) Anatomy and histology of the lung air sacs of birds. In: Histology, ultrastructure and immunohistochemistry of the respiratory organs on non mammalian vertebrates. Murcia University Press, 220-221.
Hayter RB, Besch EL. Airborne particle deposition in the respiratory tract of chickens. Poult Sci. 1974;53:1507–11.
Article
CAS
PubMed
Google Scholar
Stearns RC, Barnas GM, Walski M, Brain JD. Deposition and phagocytosis of inhaled particles in the gas exchange region of the duck, Anas platyrhynchos. Respir Physiol. 1987;67:23–36.
Article
CAS
PubMed
Google Scholar
Nganpiep L, Maina JN. Composite cellular defense stratagem in the avian respiratory system: functional morphology of the free surface macrophages and specialized pulmonary epithelia. J Anat. 2002;200:499–516.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Waeyenberghe L, Frank P, Katharina D, Richard D, Harman F, Shao-JI L, Freddy H, An M. Germination of Aspergillus fumigatus inside avian respiratory macrophages is associated with cytotoxicity. Vet Res. 2012;43:1–5.
Article
Google Scholar
Oberdoster G, Fein J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 1994;102:173–9.
Article
Google Scholar
Morrow PE. Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol. 1998;28:693–706.
Google Scholar
Kiama SG, Adekunle JS, Maina JN. Comparative in vitro study of interactions between particles and respiratory surface macrophages, erythrocytes, and epithelial cells of the chicken and the rat. J Anat. 2008;213:452–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mutua PM, Steinaa L, Muya S, Gicheru MM. Activation of Peroxisome Proliferator-Activated Receptor Gamma induces anti-inflammatory properties in the Chicken Free Avian Respiratory Macrophages. J Anim Sci Technol. 2015;57:1–7.
Article
Google Scholar
Desvergne B, Wahli W. Peroxisome proliferator activated receptors: nuclear control of metabolism. Endocr Rev. 1999;20:649–88.
CAS
PubMed
Google Scholar
Chawla A, Schwarz EJ, Dimaculangan DD, Lazar MA. Peroxisome proliferator-activated receptor (PPAR) γ: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinology. 1994;135:798–800.
CAS
PubMed
Google Scholar
Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -δ, and -γ in the adult rat. Endocrinology. 1996;137:354–66.
CAS
PubMed
Google Scholar
Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 1998;391:82–6.
Article
CAS
PubMed
Google Scholar
Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPAR γ). J Biol Chem. 1995;270:1295–302.
Article
Google Scholar
Catherine G, Siobhan M, Killeen H, Nicos AP, Nancy H, Hugh RB. Lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte derived macrophages. J Immunol. 2000;164:1663–7.
Article
Google Scholar
Golemboski KA, Whelan J, Shaw S, Kinsella JE, Dietert PR. Avian inflammatory macrophage function: shifts in arachidonic acid metabolism, respiratory burst, and cell- surface phenotype during response to sephadex. J Leukoc. 1990;48:495–501.
CAS
Google Scholar
Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.
Article
CAS
PubMed
Google Scholar
Pascal A, Simon T, Dongying W, Manjula D, Guillaume L. Aspergillus fumigates in poultry. Int J Microbiol. 2011;10:1–14.
Google Scholar
Klasing K. Avian inflammatory response mediation by macrophages. Poult Sci. 1991;70:1176–86.
Article
CAS
PubMed
Google Scholar