Ferlito A, Haigentz M Jr, Bradley PJ, Suarez C, Strojan P, Wolf GT, et al. Causes of death of patients with laryngeal cancer. Eur Arch Otorhinolaryngol. 2014;271(3):425–34. doi:10.1007/s00405-013-2478-0.
Article
PubMed
Google Scholar
Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin. 2011;61(4):212–36. doi:10.3322/caac.20121.
Article
PubMed
Google Scholar
Wang W, Lin P, Han C, Cai W, Zhao X, Sun B. Vasculogenic mimicry contributes to lymph node metastasis of laryngeal squamous cell carcinoma. J Exp Clin Cancer Res. 2010;29:60. doi:10.1186/1756-9966-29-60.
Article
PubMed Central
PubMed
Google Scholar
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med. 2012;4(3):143–59. doi:10.1002/emmm.201100209.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
Tian L, Li M, Ge J, Guo Y, Sun Y, Liu M, et al. MiR-203 is downregulated in laryngeal squamous cell carcinoma and can suppress proliferation and induce apoptosis of tumours. Tumour Biol. 2014;35(6):5953–63. doi:10.1007/s13277-014-1790-7.
Article
CAS
PubMed
Google Scholar
Zhao XD, Zhang W, Liang HJ, Ji WY. Overexpression of miR-155 promotes proliferation and invasion of human laryngeal squamous cell carcinoma via targeting SOCS1 and STAT3. PloS one. 2013;8(2):e56395. doi:10.1371/journal.pone.0056395.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li M, Tian L, Wang L, Yao H, Zhang J, Lu J, et al. Down-regulation of miR-129-5p inhibits growth and induces apoptosis in laryngeal squamous cell carcinoma by targeting APC. PloS one. 2013;8(10):e77829. doi:10.1371/journal.pone.0077829.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, Tang YJ, et al. miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: association with patient survival. Am J Trans Res. 2014;6(5):604–13.
CAS
Google Scholar
Luo HN, Wang ZH, Sheng Y, Zhang Q, Yan J, Hou J, et al. MiR-139 targets CXCR4 and inhibits the proliferation and metastasis of laryngeal squamous carcinoma cells. Med Oncol. 2014;31(1):789. doi:10.1007/s12032-013-0789-z.
Article
PubMed
Google Scholar
Wu TY, Zhang TH, Qu LM, Feng JP, Tian LL, Zhang BH, et al. MiR-19a is correlated with prognosis and apoptosis of laryngeal squamous cell carcinoma by regulating TIMP-2 expression. Int J Clin Exp Pathol. 2014;7(1):56–63.
PubMed Central
PubMed
Google Scholar
Elgamal OA, Park JK, Gusev Y, Azevedo-Pouly AC, Jiang J, Roopra A, et al. Tumor suppressive function of mir-205 in breast cancer is linked to HMGB3 regulation. PloS one. 2013;8(10):e76402. doi:10.1371/journal.pone.0076402.
Article
PubMed Central
CAS
PubMed
Google Scholar
Childs G, Fazzari M, Kung G, Kawachi N, Brandwein-Gensler M, McLemore M, et al. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol. 2009;174(3):736–45. doi:10.2353/ajpath.2009.080731.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gandellini P, Folini M, Longoni N, Pennati M, Binda M, Colecchia M, et al. miR-205 Exerts tumor-suppressive functions in human prostate through down-regulation of protein kinase Cepsilon. Cancer Res. 2009;69(6):2287–95. doi:10.1158/0008-5472.can-08-2894.
Article
CAS
PubMed
Google Scholar
Gu J, Wang Y, Wu X. MicroRNA in the pathogenesis and prognosis of esophageal cancer. Curr Pharm Des. 2013;19(7):1292–300.
CAS
PubMed
Google Scholar
Vosa U, Vooder T, Kolde R, Vilo J, Metspalu A, Annilo T. Meta-analysis of microRNA expression in lung cancer. Int J Cancer. 2013;132(12):2884–93. doi:10.1002/ijc.27981.
Article
CAS
PubMed
Google Scholar
Su N, Qiu H, Chen Y, Yang T, Yan Q, Wan X. miR-205 promotes tumor proliferation and invasion through targeting ESRRG in endometrial carcinoma. Oncol Rep. 2013;29(6):2297–302. doi:10.3892/or.2013.2400.
CAS
PubMed
Google Scholar
Nurul-Syakima AM, Learn-Han L, Yoke-Kqueen C. miR-205 in situ expression and localization in head and neck tumors—a tissue array study. Asian Pacific J Cancer Prev: APJCP. 2014;15(21):9071–5.
Article
Google Scholar
Cao P, Zhou L, Zhang J, Zheng F, Wang H, Ma D, et al. Comprehensive expression profiling of microRNAs in laryngeal squamous cell carcinoma. Head Neck. 2013;35(5):720–8. doi:10.1002/hed.23011.
Article
PubMed
Google Scholar
Shintani S, Ohyama H, Zhang X, McBride J, Matsuo K, Tsuji T, et al. p12(DOC-1) is a novel cyclin-dependent kinase 2-associated protein. Mol Cell Biol. 2000;20(17):6300–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sun M, Jiang R, Wang G, Zhang C, Li J, Jin C, et al. Cyclin-dependent kinase 2-associated protein 1 suppresses growth and tumorigenesis of lung cancer. Int J Oncol. 2013;42(4):1376–82. doi:10.3892/ijo.2013.1813.
CAS
PubMed
Google Scholar
Peng H, Shintani S, Kim Y, Wong DT. Loss of p12CDK2-AP1 expression in human oral squamous cell carcinoma with disrupted transforming growth factor-beta-Smad signaling pathway. Neoplasia. 2006;8(12):1028–36. doi:10.1593/neo.06580.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu L, Yang X, Ni Q, Xiao Z, Zhao Y, Han J, et al. Interaction between p12CDK2AP1 and a novel unnamed protein product inhibits cell proliferation by regulating the cell cycle. Mol Med Rep. 2014;9(1):156–62. doi:10.3892/mmr.2013.1801.
CAS
PubMed
Google Scholar
Zhou W, Guan X, Wang L, Liao Y, Huang J. p12(CDK2-AP1) inhibits breast cancer cell proliferation and in vivo tumor growth. J Cancer Res Clin Oncol. 2012;138(12):2085–93. doi:10.1007/s00432-012-1286-z.
Article
CAS
PubMed
Google Scholar
Zolochevska O, Figueiredo ML. Cell-cycle regulators cdk2ap1 and bicalutamide suppress malignant biological interactions between prostate cancer and bone cells. Prostate. 2011;71(4):353–67. doi:10.1002/pros.21249.
Article
CAS
PubMed
Google Scholar
Hiyoshi Y, Watanabe M, Hirashima K, Karashima R, Sato N, Imamura Y, et al. p12CDK2-AP1 is associated with tumor progression and a poor prognosis in esophageal squamous cell carcinoma. Oncol Rep. 2009;22(1):35–9.
CAS
PubMed
Google Scholar
Zolochevska O, Figueiredo ML. Novel tumor growth inhibition mechanism by cell cycle regulator cdk2ap1 involves antiangiogenesis modulation. Microvasc Res. 2010;80(3):324–31. doi:10.1016/j.mvr.2010.06.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, et al. EphA2 promotes epithelial-mesenchymal transition through the Wnt/beta-catenin pathway in gastric cancer cells. Oncogene. 2014;33(21):2737–47. doi:10.1038/onc.2013.238.
Article
CAS
PubMed
Google Scholar
Yuan W, Chen Z, Chen Z, Wu S, Guo J, Ge J, et al. Silencing of EphA2 inhibits invasion of human gastric cancer SGC-7901 cells in vitro and in vivo. Neoplasma. 2012;59(1):105–13.
Article
CAS
PubMed
Google Scholar
Yin WZ, Li F, Zhang L, Ren XP, Zhang N, Wen JF. Down-regulation of microRNA-205 promotes gastric cancer cell proliferation. Eur Rev Med Pharmacol Sci. 2014;18(7):1027–32.
PubMed
Google Scholar
Zidar N, Bostjancic E, Gale N, Kojc N, Poljak M, Glavac D, et al. Down-regulation of microRNAs of the miR-200 family and miR-205, and an altered expression of classic and desmosomal cadherins in spindle cell carcinoma of the head and neck–hallmark of epithelial-mesenchymal transition. Hum Pathol. 2011;42(4):482–8. doi:10.1016/j.humpath.2010.07.020.
Article
CAS
PubMed
Google Scholar
Matsushima K, Isomoto H, Yamaguchi N, Inoue N, Machida H, Nakayama T, et al. MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. J Trans Med. 2011;9:30. doi:10.1186/1479-5876-9-30.
Article
CAS
Google Scholar
Tian L, Zhang J, Ge J, Xiao H, Lu J, Fu S, et al. MicroRNA-205 suppresses proliferation and promotes apoptosis in laryngeal squamous cell carcinoma. Med Oncol. 2014;31(1):785. doi:10.1007/s12032-013-0785-3.
Article
CAS
PubMed
Google Scholar
Kimura S, Naganuma S, Susuki D, Hirono Y, Yamaguchi A, Fujieda S, et al. Expression of microRNAs in squamous cell carcinoma of human head and neck and the esophagus: miR-205 and miR-21 are specific markers for HNSCC and ESCC. Oncol Rep. 2010;23(6):1625–33.
CAS
PubMed
Google Scholar
Matsuo K, Shintani S, Tsuji T, Nagata E, Lerman M, McBride J, et al. p12(DOC-1), a growth suppressor, associates with DNA polymerase alpha/primase. FASEB J. 2000;14(10):1318–24.
Article
CAS
PubMed
Google Scholar
Shintani S, Mihara M, Terakado N, Nakahara Y, Matsumura T, Kohno Y, et al. Reduction of p12DOC-1 expression is a negative prognostic indicator in patients with surgically resected oral squamous cell carcinoma. Clin Cancer Res. 2001;7(9):2776–82.
CAS
PubMed
Google Scholar
Todd R, McBride J, Tsuji T, Donoff RB, Nagai M, Chou MY, et al. Deleted in oral cancer-1 (doc-1), a novel oral tumor suppressor gene. FASEB J. 1995;9(13):1362–70.
CAS
PubMed
Google Scholar
Choi MG, Sohn TS, Park SB, Paik YH, Noh JH, Kim KM, et al. Decreased expression of p12 is associated with more advanced tumor invasion in human gastric cancer tissues. Eur Surg Res. 2009;42(4):223–9. doi:10.1159/000208521.
Article
CAS
PubMed
Google Scholar
Yuan Z, Gaba AG, Kent TS, Bennett A, Miller A, Weber TK. Modulation of CDK2-AP1 (p12(DOC-1)) expression in human colorectal cancer. Oncogene. 2005;24(22):3657–68. doi:10.1038/sj.onc.1208378.
Article
CAS
PubMed
Google Scholar
Zheng J, Xue H, Wang T, Jiang Y, Liu B, Li J, et al. miR-21 downregulates the tumor suppressor P12 CDK2AP1 and stimulates cell proliferation and invasion. J Cell Biochem. 2011;112(3):872–80. doi:10.1002/jcb.22995.
Article
CAS
PubMed
Google Scholar
de Nigris F, Sica V, Herrmann J, Condorelli G, Chade AR, Tajana G, et al. c-Myc oncoprotein: cell cycle-related events and new therapeutic challenges in cancer and cardiovascular diseases. Cell cycle. 2003;2(4):325–8.
Article
PubMed
Google Scholar
Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene. 2009;28(27):2485–91. doi:10.1038/onc.2009.112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jiang W, Kahn SM, Zhou P, Zhang YJ, Cacace AM, Infante AS, et al. Overexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene. 1993;8(12):3447–57.
CAS
PubMed
Google Scholar
Cheng G, Zhang L, Lv W, Dong C, Wang Y, Zhang J. Overexpression of cyclin D1 in meningioma is associated with malignancy grade and causes abnormalities in apoptosis, invasion and cell cycle progression. Med Oncol. 1993;32(1):439. doi:10.1007/s12032-014-0439-0.
Article
Google Scholar
Du Z, Tong X, Ye X. Cyclin D1 promotes cell cycle progression through enhancing NDR1/2 kinase activity independent of cyclin-dependent kinase 4. J Biol Chem. 2013;288(37):26678–87. doi:10.1074/jbc.M113.466433.
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu B, Che W, Xue J, Zheng C, Tang K, Zhang J, et al. SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells. Cell Physiol Biochem. 2013;32(3):655–62. doi:10.1159/000354469.
Article
PubMed
Google Scholar