Dawes C, Siqueira W. The salivary proteome: challenges and perspectives. Proteom Clin Appl. 2011;5:575–9.
Article
Google Scholar
Antonelli G, Chiappin S, De Palo EF, Gatti R. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta. 2007;383(1–2):30–40.
PubMed
Google Scholar
Clynes M, Curran A, Dowling P, Henry M, Meleady P, Wormald R. Analysis of the saliva proteome from patients with head and neck squamous cell carcinoma reveals differences in abundance levels of proteins associated with tumour progression and metastasis. J Proteom. 2008;71(2):168–75.
Article
Google Scholar
Cabras T, Castagnola M, Calò L, Fanali C, Fiorita A, Iavarone F, Messana I, Paludetti G, Passali GC, Picciotti PM, Pisano E, Scarano E. Potential applications of human saliva as diagnostic fluid. Acta Otorhinolaryngol Ital. 2011;31(6):347–57.
PubMed Central
PubMed
Google Scholar
Lakshmaiah Narayana J, Chen J-Y. Antimicrobial peptides: possible anti-infective agents. Pepitides. 2015. (in press).
Shiomi K, Nakazato M, Ihi T, Kanagawa K, Matsuo H, Matsukura S. Establishment of radioimmunoassay for human neutrophil peptides and their increases in plasma and neutrophil in infection. Biochem Biophys Res Common. 1993;195:1336–44.
Article
CAS
Google Scholar
Dorland WAN, editor. Dorland’s illustrated medical dictionary. 28th ed. Philadelphia: Saunders; 1994.
Google Scholar
Lichtenstein A, Ganz T, Selested ME, Lehrer RI. In vitro tumor cell cytolysis mediated by peptide defensins of human and rabbit granulocytes. Blood. 1986;68:1407–10.
CAS
PubMed
Google Scholar
Lichtenstein A, Ganz T, Nguyen TM, Selsted ME, Lehrer RI. Mechanism of target cytolysis by peptide defensins: target cell; metabolic activity, possible endocytosis, are crucial for expression of cytotoxity. J Immunol. 1988;140:2686–94.
CAS
PubMed
Google Scholar
Lichtenstein A. Mechanism of mammalian cell lysis mediated by peptide defensins. Evidence for an initial alteration of the plasma membrane. J Clin Invest. 1991;88:93–100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muller CA, Markovic-Lipkovski J, Klatt T, Gamper J, Schwarz G, Beck H, Deeg M, Kalbacher H, Widmann S, Wessels TJ, Becker V, Muller GA, Flad T. Human α-defensins HNPs-1, -2 and -3 in renal cell carcinoma. Am J Pathol. 2002;160:1311–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang D, Chetrov O, Bykovskaia SN, Chen Q, Buffo MJ, Shogan J, Anderson M, Schroeder JM, Wang JM, Howard OMZ, Oppenheim JJ. Beta-Defensin: linking innate and adaptive immunity through dendritic and T cell CCR6. Science. 1999;286:525–8.
Article
CAS
PubMed
Google Scholar
Krisanaprakornkit S, Kimball JR, Weinberg A, Darveau RP, Bainbridge BW, Dale BA. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathway and role of commensal bacteria in innate immunity and the epithelial barrier. Infect Immun. 2000;68:2907–15.
Article
PubMed Central
CAS
PubMed
Google Scholar
Moon SK, Lee HY, Li JD, Nagura M, Kang SH, Chun YM, Linthicum FH, Ganz T, Anadalibi A, Lim DJ. Activation of a Src-dependent Raf-MEK 1/2-ERK signaling pathway is required for IL-1 alpha-induced up regulation of beta-defensin 2 in human middle ear epithelial cells. Biochem Biophys Acta. 2002;1590:41–51.
Article
CAS
PubMed
Google Scholar
Tsutsumi-Ishii Y, Nagaoka I. NF-kappa B-mediated transcriptional regulation of human beta-defensin-2 gene following lipopoly saccharide stimulation. J Leukoc Biol. 2002;71:154–62.
CAS
PubMed
Google Scholar
Cirioni O, Giacometti A, Ghiselli R, Orlando F, Kamysz W, D’Amato G, Mocchegiani F, Lukasiak J, Silvestri C, Saba V, Scalise G. Potential therapeutic role of histatin derivative P-113d in experimental rat models of Pseudomonas aeruginosa sepsis. J Infect Dis. 2004;190(2):356–64.
Article
CAS
PubMed
Google Scholar
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol. 2012;32(2):143–71.
Article
CAS
PubMed
Google Scholar
Melino S, Santone C, Di Nardo P, Sarkar B. Histatins: salivary peptides with copper (II) and zinc(II)-binding motifs. Perspectives for biomedical applications. FEBS J. 2014;281:657–72.
Article
CAS
PubMed
Google Scholar
Groot F, Sanders RW, ter Brake O, Nazmi K, Veerman EC, Bolscher JG, Berkhout B. Histatin 5-derived peptide with improved fungicidal properties enhances human immunodeficiency virus type 1 replication by promoting viral entry. J Virol. 2006;80:9236–43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals. 2014;7:545–94.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kato T, Takahashi N, Kuramitsu HK. Sequence analysis and characterization of the Porphyromonas gingivalis prtC gene, which expresses a novel collagenase activity. Bacteriology. 1992;174:3889–95.
CAS
Google Scholar
Brand HS, Veerman EC. Saliva and wound healing. Chin J Dent Res. 2013;16:7–12.
CAS
PubMed
Google Scholar
Vylkova S, Jang WS, Li W, Nayyar N, Edgerton M. Histatin 5 initiates osmotic stress response in Candida albicans via activation of the Hog1 mitogen-activated protein kinase pathway. Eukaryot Cell. 2007;6(10):1876–88.
Article
PubMed Central
CAS
PubMed
Google Scholar
Helmerhorst EJ, Troxler RF, Oppenheim FG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci USA. 2001;98(25):14637–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sugiyama K, Suzuki Y, Furuta H. Isolation and characterization of histamine-releasing peptides from human parotid saliva. Life Sci. 1985;37:475–80.
Article
CAS
PubMed
Google Scholar
Wan AK, Seow WK, Walsh LJ, Bird PS. Comparison of five selective media for the growth and enumeration of Streptococcus mutans. Aust Dent J. 2002;47(1):21–6.
Article
CAS
PubMed
Google Scholar
Sadatullah S, Mohamed NH, Razak FA. The antimicrobial effect of 0.1 ppm ozonated water on 24-hour plaque microorganisms in situ. Braz Oral Res. 2012;26(2):126–31.
Article
PubMed
Google Scholar
Krzyściak W, Pluskwa KK, Piątkowski J, Krzyściak P, Jurczak A, Kościelniak D, Skalniak A. The usefulness of biotyping in the determination of selected pathogenicity determinants in Streptococcus mutans. BMC Microbiol. 2014;14:194. doi:10.1186/1471-2180-14-194.
Article
PubMed Central
PubMed
Google Scholar
Sugimoto J, Kanehira T, Mizugai H, Chiba I, Morita M. Relationship between salivary histatin 5 levels and Candida CFU counts in healthy elderly. Gerodontology. 2006;23(3):164–9.
Article
PubMed
Google Scholar
Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007;369:51–9.
Article
CAS
PubMed
Google Scholar
Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev. 1986;50:353–80.
PubMed Central
CAS
PubMed
Google Scholar
Ahn SJ, Ahn SJ, Wen ZT, Brady LJ, Burne RA. Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect Immun. 2008;6(9):4259–68.
Article
Google Scholar
Zijnge V, van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T, Gmur R, Harsmen HJM. Oral biofilm architecture on natural teeth. PLoS One. 2010;5(2):e9321.
Article
PubMed Central
PubMed
Google Scholar
Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular rmatrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69–86.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kang MS, Oh JS, Lee HC, Lim HS, Lee SW, Yang KH, Choi NK, Kim SM. Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria. J Microbiol. 2011;49(2):193–9.
Article
CAS
PubMed
Google Scholar
Peterson SN, Snesrud E, Schork NJ, Bretz WA. Dental caries pathogenicity: a genomic and metagenomic perspective. Int Dent J. 2011;61(1):11–22.
Article
PubMed Central
PubMed
Google Scholar
Wang W, Tao R, Tong Z, Ding Y, Kuang R, Zhai S, Liu J, Ni L. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides. 2012;33(2):212–9.
Article
CAS
PubMed
Google Scholar
Gornowicz A, Tokajuk G, Bielawska A, Maciorkowska E, Jabłoński R, Wójcicka A, Bielawski K. The assessment of sIgA, histatin-5, and lactoperoxidase levels in saliva of adolescents with dental caries. Med Sci Monit. 2014;29(20):1095–100.
Google Scholar
Pepperney A, Chikindas ML. Antibacterial peptides: opportunities for the prevention and treatment of dental caries. Probiotics Antimicrob Proteins. 2011;3(2):68–96.
Article
CAS
Google Scholar
Huo L, Zhang K, Ling J, Peng Z, Huang X, Liu H, Gu L. Antimicrobial and DNA-binding activities of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans. Arch Oral Biol. 2011;56(9):869–76.
Article
CAS
PubMed
Google Scholar
Van’t Hof W, Reijnders IM, Helmerhorst EJ, Walgreen-Weterings E, Simoons-Smit IM, Veerman EC, Amerongen AV. Synergistic effects of low doses of histatin 5 and its analogues on amphotericin B anti-mycotic activity. Antonie Van Leeuwenhoek. 2000;78:163–9.
Article
PubMed
Google Scholar
Nikawa H, Jin C, Fukushima H, Makihira S, Hamada T. Antifungal activity of histatin-5 against non-albicans Candida species. Oral Microbiol Immunol. 2001;16:250–2.
Article
CAS
PubMed
Google Scholar
Dale BA, Krisanaprakornkit S. Defensin antimicrobial peptides in the oral cavity. J Oral Pathol Med. 2001;30:321–7.
Article
CAS
PubMed
Google Scholar
Ribeiro TR, Dria KJ, de Carvalho CB, Monteiro AJ, Fonteles MC, de Moraes Carvalho K, Fonteles CS. Salivary peptide profile and its association with early childhood caries. Int J Paediatr Dent. 2013;23(3):225–34.
Article
PubMed
Google Scholar
Tao R, Jurevic RJ, Coulton KK, Tsutsui MT, Roberts MC, Kimball JR, Wells N, Berndt J, Dale BA. Salivary antimicrobial peptide expression and dental caries experience in children. Antimicrob Agents Chemother. 2005;49(9):3883–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Phattarataratip E, Olson B, Broffitt B, Qian F, Brogden KA, Drake DR, Levy SM, Banas JA. Streptococcus mutans strains recovered from caries-active or caries-free individuals differ in sensitivity to host antimicrobial peptides. Mol Oral Microbiol. 2011;26(3):187–99.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nishimura E, Eto A, Kato M, Hashizume S, Imai S, Nisizawa T, Hanada N. Oral streptococci exhibit diverse susceptibility to human beta-defensin-2: antimicrobial effects of hBD-2 on oral streptococci. Curr Microbiol. 2004;48(2):85–7.
Article
CAS
PubMed
Google Scholar
Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M. Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, beta-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother. 2005;55(6):888–96.
Article
CAS
PubMed
Google Scholar
Ling Z, Kong J, Jia P, Wei C, Wang Y, Pan Z, Huang W, Li L, Chen H, Xiang C. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol. 2010;60:677–90. doi:10.1007/s00248-010-9712-8.
Article
CAS
PubMed
Google Scholar
Tanner AC, Mathney JM, Kent RL, Chalmers NI, Hughes CV, Loo CY, Pradhan N, Kanasi E, Hwang J, Dahlan MA, Papadopolou E, Dewhirst FE. Cultivable anaerobic microbiota of severe early childhood caries. J Clin Microbiol. 2011;49(4):1464–74.
Article
PubMed Central
CAS
PubMed
Google Scholar
Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407–17.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van Houte J, Lopman J, Kent R. The predominant cultivable flora of sound and carious human root surfaces. J Dent Res. 1994;73(11):1727–34.
PubMed
Google Scholar
Van Houte J, Sansone C, Joshipura K, Kent R. Mutans streptococci and non-mutans streptococci acidogenic at low pH, and in vitro acidogenic potential of dental plaque in two different areas of the human dentition. J Dent Res. 1991;70:1503–7.
Article
PubMed
Google Scholar
Gross EL, Beall CJ, Kutsch SR, Firestone ND, Leys EJ, Griffen AL. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7(10):e47722.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sampaio-Maia B, Monteiro-Silva F. Acquisition and maturation of oral microbiome throughout childhood: an update. Dent Res J (Isfahan). 2014;11(3):291–301.
Google Scholar
Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC, Keijser BJ. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genom. 2011;4:22. doi:10.1186/1755-8794-4-22.
Article
CAS
Google Scholar