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The therapeutic potential of mesenchymal 
stem cells in treating osteoporosis
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Abstract 

Osteoporosis (OP), a common systemic metabolic bone disease, is characterized by low bone mass, increasing bone 
fragility and a high risk of fracture. At present, the clinical treatment of OP mainly involves anti-bone resorption drugs 
and anabolic agents for bone, but their long-term use can cause serious side effects. The development of stem cell 
therapy and regenerative medicine has provided a new approach to the clinical treatment of various diseases, even 
with a hope for cure. Recently, the therapeutic advantages of the therapy have been shown for a variety of orthopedic 
diseases. However, these stem cell-based researches are currently limited to animal models; the uncertainty regard-
ing the post-transplantation fate of stem cells and their safety in recipients has largely restricted the development of 
human clinical trials. Nevertheless, the feasibility of mesenchymal stem cells to treat osteoporotic mice has drawn a 
growing amount of intriguing attention from clinicians to its potential of applying the stem cell-based therapy as a 
new therapeutic approach to OP in the future clinic. In the current review, therefore, we explored the potential use of 
mesenchymal stem cells in human OP treatment.
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Introduction
The concept of osteoporosis (OP) can be traced back to 
1885 when Gustav Pommer, German pathologist, defined 
the distinction between OP and osteomalacia [1]. Subse-
quently, of OP the predisposing factors, general aetiology 
and pathogenesis, clinical presentation, prevention, treat-
ment, and prognosis were deeply studied in the twentieth 
century [2, 3]. In the 1990s, a clear definition of OP was 
put forward to be recognized worldwide [4, 5]. Currently, 
it is believed that OP is a multifactorial, systemic meta-
bolic bone disease characterized by the deterioration of 
bone mass and microstructure destruction, which lead to 
decreased bone mineral density (BMD), increased bone 

fragility and the risk of bone fracture [6]. The occur-
rence and progression of OP are believed to be closely 
related to aging, with its incidence being the highest in 
elderly men and postmenopausal women. As previously 
reported, an estimated 54 million American women and 
men aged over 50 suffered from OP and osteopenia [7], 
and in China the OP-stricken population would reach 
over 120 million by 2050 [8].

In the treatment of OP, the primary goal is to maintain 
the balance between bone metabolism and reduction of 
bone loss. At present, the clinically administered medica-
tions to treat OP are divided into three categories accord-
ing to pathogenesis: basic supplements, antiresorptive 
agents and bone formation-accelerating agents [9]. Vita-
min D, as a basic supplement and was demonstrated not 
to have a therapeutic effect on fracture or BMD [10]. The 
antiresorptive agents to treat OP include bisphosphonate, 
which has a variety of side effects [11]. In recent years, 
the stem cell therapy for OP has been reported to reduce 
bone loss and decrease the patient’s vulnerability to frac-
tures [12]. Stem cells, derived from embryos, fetuses or 
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adults with unlimited self-renewal, proliferation and dif-
ferentiation ability under specific conditions, can be clas-
sified into totipotent SCs (TSCs), pluripotent SCs (PSCs) 
and unipotent SCs (USCs) according to their differentiat-
ing potential [13]. As pluripotent stem cells, mesenchy-
mal stem cells (MSCs) show relatively high versatility and 
differentiate into multipotent bone, cartilage and adipose 
tissue cells; these cells have become the most appropriate 
source for stem cell-based therapy [14].

The goal of our research was to have a comprehensive 
review of the recent advances in treating OP with mes-
enchymal stem cell therapy. In particular, our review 
focused on the preclinical and clinical researches on the 
use of bone marrow-derived mesenchymal stem cells 
(BM-MSCs), adipose tissue-derived MSCs (AD-MSCs), 
and umbilical cord-derived MSCs (UC-MSCs) for OP 
treatment.

Physiopathology of osteoporosis
OP is a complex metabolic disease that is associated with 
risk factors such as high BMI, history of smoking and 
drinking, age at menopause, and postmenopausal sta-
tus [15, 16]. High BMI caused by obesity was previously 
considered to be conducive to maintaining bone health 
and reducing the risk of fracture [17]. Recent studies 
have shown that obesity can cause a harmful effect on 
bone metabolism, and the weakened bone strength may 
be related to the location of fat accumulation. In obesity, 
although the overall fat mass increases significantly, the 
part of lean body weight gain has been proved to have a 
beneficial effect on BMD [18]. We believe that this phe-
nomenon is related to the increase of bone mechanical 
load. However, high body fat rate and high waist circum-
ference are considered to be associated with low BMD 
and osteoporotic fractures [19, 20]. Peptide hormones 
produced by adipose tissue are involved in bone metabo-
lism [21]. Leptin plays a two-way regulatory role in bone 
metabolism. On the one hand, leptin can stimulate the 
differentiation of osteoblasts and inhibit the differentia-
tion of pluripotent stem cells into adipocytes to promote 
osteogenesis; on the other hand, bone formation can be 
decreased by reducing insulin resistance and inhibiting 
bone anabolism [21, 22]. Additionally, the increase of fat 
content is related to the increase of androgen to estro-
gen, which has a positive effect on bone metabolism. 
Therefore, when discussing the contradictory relation-
ship between obesity and OP, the protective and harmful 
effects of fat on bone must be considered simultaneously 
[23].

With pain being the predominant symptom, OP facili-
tates compression fractures of the vertebrae and trau-
matic fractures of the femoral neck in its victims, thus 
leading to a significant decline in the quality of life. In 

fact, the pathophysiological mechanism of OP is sophisti-
cated and multifactorial. As a consequence of aging and/
or oestrogen deficiency, the disorders of bone metabo-
lism act as the principal pathophysiologic mechanism of 
primary OP. Under normal physiological conditions, the 
homeostasis of bone metabolism is mainly regulated by 
osteoblasts, osteoclasts, and osteocytes. Osteocytes are 
the most abundant cells in bone tissues, accounting for 
more than 90% there, and seeming to play an indispensa-
ble role in signal transduction in bone metabolism [24]. 
Osteoclasts, which are multinucleated cells that originate 
in haematopoietic myeloid cells in bone marrow (BM), 
can absorb mineralized bone matrix, as the primary cells 
involved in bone destruction in OP. Osteoblasts, which 
are responsible for the formation of new bone have three 
main processes involved; firstly, extracellular matrix pro-
teins are synthesized by osteoblasts, and subsequently, 
extracellular matrix proteins are covered by a layer of cal-
cium hydroxyapatite crystals within the next few months, 
thereby mineralizing the matrix, and ultimately, bone 
remodelling occurs.

Actually, numerous signalling pathways are involved in 
the regulation of bone metabolism; the key ones mainly 
refer to the receptor activator of nuclear factor-kappa 
B (RANK)-RANK ligand (RANKL) and Wnt/β-catenin 
signalling pathway. In the 1990s, it was discovered that 
the RANKL/RANK/Osteoprotegrin (OPG) signalling 
pathway is the key to the regulation of osteoclast gen-
eration, providing a theoretical basis for the research on 
and development of new anti-reabsorption drugs such as 
denosumab [25]. RANKL combines with RANK on the 
cell membrane surface to regulate the recruitment and 
differentiation of osteoclasts, thus playing a role in induc-
ing the differentiation and maturation of osteoclasts and 
promoting bone absorption. OPG, a soluble trap receptor 
secreted by osteoblasts, plays a competitive role in bind-
ing RANKL along this pathway. OPG shows a stronger 
affinity with RANKL than does RANK, thereby inhibit-
ing osteoclast differentiation, activation, and maturation 
by blocking binding between RANKL and RANK, which 
significantly reduces the ability of RANK to promote 
osteoclast formation. Furthermore, OPG can promote 
bone formation by activating osteoblasts, thus exerting 
an inhibitory effect on bone resorption [26].

As the major regulator of osteoblast-mediated bone 
formation, the canonical Wnt/β-catenin signalling 
pathway, once activated, promotes dishevelled protein 
expression and activation and mediates GSK-3β phos-
phorylation, facilitating the stable maintenance and con-
tinuous aggregation of β-catenin in target cells. β-catenin 
is known to enter the nucleus from the cytoplasm; when 
its concentration reaches a certain level in the cytoplasm, 
it combines with LEF/TCF family members to recruit 
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bcl9 and other related factors to positively regulate the 
expression of target genes, promoting the proliferation 
and differentiation of bone marrow mesenchymal stem 
cells into osteoblasts. Simultaneously, activated Wnt sig-
nalling can promote the secretion of OPG in the RANK/
RANKL/OPG signalling pathway, thus inhibiting the dif-
ferentiation, activation, maturation of osteoclasts, and 
promoting bone formation [27].

The current treatment of OP
The treatment involving nonpharmacological interven-
tions is the primary approach to those who are at the 
early stage of OP. This approach is mainly taken in the 
form of ensuring adequate daily calcium, vitamin D, and 
protein intake; administering an appropriate amount of 
weight-bearing physical exercise to maintain or improve 
physical quality; and facilitating appropriate lifestyle 
changes such as smoking cessation and alcohol consump-
tion moderation. As the disease progresses, pharma-
cological interventions become inevitable; calcium and 
vitamin D are routinely recommended for all patients as 
OP treatment. Both substances are essential for the stabi-
lization of the normal bone internal environment so as to 
reduce the rate of bone loss and fracture risk.

Previous study has shown that additional intake of 
vitamin D and calcium supplements each day can sig-
nificantly improve the calcium balance in postmenopau-
sal women, resulting in a significant increase in BMD at 
the femoral neck exerting favourable effects on glucose 
and lipid level [28]. At present, a variety of medications 
are clinically prescribed to treat OP, which mainly refer 
to bisphosphonates, parathyroid hormone (PTH) and 
its analogues, a selective oestrogen-receptor modula-
tor (SERM, raloxifene), a human monoclonal antibody 
against RANKL (denosumab), a humanized monoclonal 
antibody against sclerostin (romosozumab) and a cathep-
sin K inhibitor (odanacatib). As the most widely admin-
istered bone resorption inhibitor, bisphosphonates can 
induce osteoblasts to secrete inhibitors, exerting cyto-
toxic effects on osteoclasts, inhibiting the activation of 
osteoclasts, and restraining bone resorption. Moreover, 
bisphosphonates which combine with calcium phosphate 
are adsorbed on the surface of bone hydroxyapatite crys-
tals to prevent the loss of calcium in bone, thus reducing 
the incidence of lumbar and hip fractures in patients with 
OP [29]. Bisphosphonates, widely used in the clinic, defi-
nitely have a curative effect, but with some side effects, 
as indicated in the previously reported evidence that 
they may cause typical osteonecrosis of femoral frac-
ture and jaw [30, 31]. Teriparatide (recombinant human 
PTH [1–34]), the first bone anabolic agent approved by 
the FDA, can effectively promote bone formation on a 
short-term course [32], but increase the occurrence of 

osteosarcoma in the preclinical rat models on a long-
term and high-dose course [33]; therefore, the treating 
course of teriparatide has been limited to 24 months by 
the FDA. Selective oestrogen-receptor modulators, simi-
lar to oestrogen replacement therapy (ERT), are mainly 
taken to prevent bone loss in postmenopausal women; 
however, the use of these drugs increases the risk of 
breast cancer, cardiovascular events, stroke, and pulmo-
nary embolism [34]. Denosumab, a human monoclonal 
antibody against RANKL, is capable of competitively 
binding to the RANKL protein, as in the case of OPG, 
inhibiting the differentiation and activation of osteoclasts 
mediated by the RANKL/RANK/OPG signalling path-
way, reducing osteoclastic activity and improving bone 
mass and bone density [35].

As indicated in a clinical study, OP patients receiving 
denosumab could experience a 68% reduction in verte-
bral fracture and a 40% decrease in hip fracture [36]. The 
most common complication of the denosumab treat-
ment is hypocalcaemia, and another serious one, oste-
onecrosis of the jaw, which was the first to be reported 
in the patients on bisphosphate [37]. In the FREEDOM 
experiment, of 4550 patients who received denosumab 
5 developed severe complications of osteonecrosis in 
the jaw [38]. Romosozumab, a humanized monoclo-
nal antibody against sclerostin, can bind to osteosclero-
tin in vivo, inhibiting its binding with LRP5/6 and other 
proteins of the low-density lipoprotein-related recep-
tor family, enhancing the Wnt signalling pathway, sig-
nificantly increasing bone mass formation, and reducing 
bone resorption, which exerts a dual regulatory effect 
[39]. When compared with other monoclonal antibody 
medications including denosumab, romosozumab does 
not increase the risk of fracture after drug withdrawal 
and have a significant effect on the incidence of tumours 
in a rat model [40], but it may be more prone to causing 
local reactions at the injection site such as discomfort, 
pain, erythema, rash, haematoma or bleeding [41]. Cath-
epsin K, a lysosomal protease that is highly expressed in 
osteoclasts, plays a key role in the degradation of bone 
matrix proteins, and cathepsin K inhibitors show a simi-
lar efficiency as bisphosphonates in increasing BMD and 
decreasing the risk of fragility fractures [42]. Odanacatib 
inhibits bone resorption without reducing the numbers 
of osteoclasts or inhibiting bone formation, and is well 
tolerated without significant drug-related side effects 
[43].

In the past few decades, an extraordinary understand-
ing has been achieved on the biology of bones, so have 
remarkable progresses been made in the development 
of OP medications. However, further researches are still 
needed on the development of new drugs and thera-
pies with fewer side effects. Since stem cell therapy is 
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considered a promising new therapeutic strategy for 
restoring normal tissue structure and delaying disease 
progression. OP therapy based on mesenchymal stem 
cells can be of great interest.

The characteristics of MSCs
For the first time in 1968, Friedenstein et  al. isolated 
MSCs from bone marrow [44]. As indicated in the sub-
sequent studies, MSCs exhibit immune and nutritional 
activity and high in  vitro self-renewal and multilineage 
differentiation capabilities [45], and they also express and 
secrete numerous bioactive factors, including cytokines 
[46], growth factors and chemokines, which are involved 
in the paracrine activity of MSCs [47]. Adult MSCs have 
been found to exist in almost all tissues, such as bone 
marrow, umbilical cord and placenta, adipose tissue, 
peripheral blood, and endometrial tissue. Not only can 
they differentiate into a variety of connective tissues, 
such as bone, muscle, adipose tissue, and cartilage, but 
they can also differentiate into nonmesodermal lineage 
cells, such as hepatocytes, neuron-like cells and pan-
creatic cells; moreover, they can differentiate into other 
types of cells under suitable conditions [48].

As indicated in the previously reported studies, many 
potential MSC surface markers are related to stem cell 
characteristics, including CD73, CD90, and CD105, but 
from this list are missing CD19, CD45, CD34, CD14, 
CD79α and HLA-DR. There are significant differences in 
the expression of these markers on MSCs from different 
sources [49]. Human bone marrow, umbilical cord blood, 
and adipose tissue have been the most used sources of 
adult MSCs [50]. Among these cell sources, BM-MSCs 
have been extensively studied in the context of tissue 
regeneration and repair due to their efficient differen-
tiation ability. Adipose tissue is especially abundant and 
readily available in our body, which makes it the safest 
and most reliable site for stem cell isolation [51]. Con-
sidered to be the most promising stem cells for articu-
lar cartilage repair, hUC-MSCs show a higher ability of 
proliferation and cloning than BM-MSCs and AD-MSCs 
[52].

MSCs‑based treatment of OP
The incidence of the fractures caused indirectly by OP 
still accounts for the highest in the elderly population, 
even though remarkable progresses have been made 
in the development of OP medications. A present, cer-
tain drug and nondrug therapies are mainly performed 
to treat OP by improving bone strength and prevent-
ing fracture [53]. Although they are administered on the 
patient with OP, these medications have some limitations 
and even cause adverse reactions. As in the case of MSC 
transplantation which has been proven to be a feasible 

and novel therapeutic approach in regenerative medicine 
and stem cell therapy. Stem cells can differentiate into 
target tissues by self-differentiation, and promote tis-
sue progenitor cells to differentiate into target tissues by 
secreting various proteins, enzymes and factors. Through 
the direct interaction between cells to promote the dif-
ferentiation of other cells into target tissues, these fac-
tors enable stem cells to repair damaged tissues [54]. A 
growing number of researchers have begun to explore the 
potential of MSCs in the treatment of chronic diseases 
[55]. In the current review, therefore, we illustrated the 
mechanisms of osteogenic and adipogenic differentiation 
of MSC (Fig. 1) and evaluated potential of bone marrow, 
umbilical cord, and adipose-derived mesenchymal stem 
cells in the treatment of OP (Table 1).

Bone marrow‑derived mesenchymal stem cells
BM-MSCs have various biological advantages in terms 
of tissue repair, and their high osteogenic differentia-
tion, the means of which are widely applied to the repair 
of bone and cartilage injuries [56]. Previous studies have 
mainly focused on clarifying the positive role of BM-
MSCs in promoting osteogenesis [57, 58]. The efficacy 
of BM-MSCs in the treatment of OP has been demon-
strated in quite a few preclinical animal models, as indi-
cated in the previously reported two studies where both 
the haemopoietic system and the bone marrow microen-
vironment were normalized after the direct infusion of 
allogeneic bone marrow cells into the bone marrow cavity 
of irradiated SAMP6 mice, and the levels of IL-6, RANKL 
and IL-11, involved in regulating bone reconstruction, 
returned to normal, similar to those of B6 mice, thereby 
ameliorating the imbalance between bone formation and 
resorption [59, 60]. Moreover, the intraosseous injection 
of allograft BM-MSCs into the femur in a postmenopau-
sal rat model of OP definitely caused the femoral tra-
becula of the treated rats to increase significantly within 
two months, appearing similar to the femurs of the con-
trols. GFP labelling results also confirmed the presence of 
transplanted BM-MSCs on the trabecular surface of the 
treated rats [61]. In the Sprague–Dawley adult rat model, 
of closed transverse fracture with internal fixation, a sys-
temic MSC injection and local MSC injection were per-
formed at the fracture site on the 4th day after fracture; 
the results of weekly X-ray, micro-CT, mechanical tests, 
etc., showed that the callus size grew significantly larger 
in the rats after treatment, but no difference in fracture 
healing was found between the two regimens adminis-
tered [62].

With the research furthering on BM-MSC-mediated 
bone tissue repair, bone marrow aspirate concentrate 
(BMAC), which is rich in cytokines, has been widely used 
in the treatment of knee osteoarthritis and other diseases 
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[63]. According to the review of the relevant studies, 
researchers have come to believe that the body can regu-
late the function of BM-MSCs through multiple signal-
ling pathways, including the TGF β/Smad pathway [64, 
65], BMP-2/Smad pathway [66, 67], MAPK pathway [68, 
69], Wnt/β-catenin pathway [70], PPAR-γ pathway [71], 
etc., and that the body can either promote their osteo-
genic differentiation or inhibit adipogenic differentia-
tion to regulate OP. As indicated in a previously reported 
study where the expression of Foxf1 was detected in 
various tissues of OVX mice and its expression increased 
significantly in bone extracts and BMSCs, followed by 
a gradual decrease during the osteogenic differentia-
tion of BM-MSCs, the results of in vitro loss-of-function 
approach showed that Foxf1 could regulate the osteoblast 
differentiation of BM-MSCs through the Wnt/β-catenin 
signalling pathway [72].

Recent researches indicate that each type of factors 
mainly mediates the cell signal transduction of the cor-
responding signalling pathways to regulate the function 
of BM-MSCs. The in vivo and in vitro studies have shown 
that p38α deficiency can affect the synthesis of RANKL, 
M-CSF, or other molecules involved in the regulation of 
osteoclast formation, and that p38α expressed by BM-
MSCs can effectively regulate osteogenesis through the 

TAK1-NF-κB signalling pathway and promote the pro-
duction of OPG by stem cells to regulate the generation 
of osteoclasts [73]. Furthermore, the influence of RNA in 
regulating the osteogenic differentiation of BM-MSCs, 
in which microRNAs [74] and lncRNAs [75] were aber-
rantly expressed and combined with their respective tar-
get proteins in the patients with OP, thus playing a role 
in the regulation of osteogenic differentiation of BMSCs.

Adipose tissue‑derived mesenchymal stem cells
Known as pluripotent stem cells, adipose-derived mesen-
chymal stem cells are one of the common types of MSCs 
in cell therapy and regenerative medicine. AD-MSCs, 
mainly isolated from adipose tissues, are more abundant 
in brown adipose tissues than in white adipose ones. 
Mostly AD-MSCs which emerge from the mesoderm can 
be directed to differentiate into other mesoderm-derived 
tissues such as fat, bone, muscle, tendon, and blood ves-
sel [76]. When the inflammation or injury occurs in vivo, 
the body may reduce the activity of AD-MSCs, affecting 
their immune function by regulating paracrine function 
and differentiation potential [77]. However, the inflam-
matory cytokines and chemokines released at the injury 
site can enable AD-MSCs to be recruited there, showing 

Fig. 1  Schematic diagram illustrating mechanisms of osteogenic and adipogenic differentiation of MSC
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Table 1  Summary of previous studies on osteogenic differentiation of MSCs

BMSCs, bone marrow mesenchymal stem cells; SAMP6, senescence-accelerated mouse prone 6; BM, bone marrow; MOTS-c, mitochondrial open reading frame of the 
12S rRNA-c; GGCX, γ-glutamyl carboxylase; PAAE, pilose antler aqueous extract; Runx2, runt-related transcription factor 2; Exo, exosome; MAPK, mitogen-activated 
protein kinase; AD-MSCs, adipose-derived mesenchymal stem cells; HSPB7, heat shock protein B7; SCD-1, stearoyl-CoA desaturase 1; MFX, microfracture; PRF, platelet-
rich fibrin; GSI-I, γ-secreatase inhibitor I; CIA, collagen-induced arthritis; OIM, osteogenic induction medium

Author, reference Cell type Animal model Condition Intervention Consequence

Takada et al. [60] BMSCs SAMP6 mice Irradiated Injection BM microenvironment nor-
malized and trabecular bone 
increased

Ocarino Nde M.et al. [61] BMSCs Female Wistar rats Ovariectomy Injection Trabecular bone percentage 
increased

Huang et al. [62] BMSCs Sprague–Dawley rats Femoral fracture Injection Larger callus size and higher 
mechanical property

Hu et al. [64] BMSCs Rats Osteogenic differentiation Treated with MOTS-c MOTS-c promoting 
osteogenic differentiation via 
TGF-β/Smad pathway

Wang et al. [65] BMSCs Sprague–Dawley rats Ovariectomy Transfected with pcDNA-
GGCX

Reduced GGCX inhibiting 
osteogenic differentiation via 
TGFβ/smad pathway

Ren et al. [66] BMSCs Rats Ovariectomy Treated with PAAE PAAE inducing osteogenic 
differentiation via BMP-2/
Smad1,5/Runx2 pathway

Feng et al. [67] BMSCs Sprague–Dawley rats Ovariectomy Treated with simvastatin Simvastatin promoting 
osteogenic differentiation via 
BMP-2/Smads pathway

Zhao et al. [68] BMSCs Rats MSC-Exo Co-culture of MSC-Exo and 
hFOB 1.19

MSC-Exo promoting 
osteogenic differentiation via 
MAPK pathway

Chen et al. [79] AD-MSCs Patients Subculture Osteogenic induction Osteogenic differentiation of 
AD-MSCs less affected by age 
and multiple passage

Wang et al. [81] AD-MSCs Female C57BL/6 mice Ovariectomy Osteogenic induction Osteogenic potential of AD-
MSCs impaired in osteoporo-
tic mice

Ye et al. [82] AD-MSCs Rabbits Ovariectomy Osteogenic induction Stimulating osteogenic dif-
ferentiation and enhancing 
bone regeneration

Jin et al. [84] hAD-MSCs Mice Ovariectomy Knockdown or overexpres-
sion of HSPB7 by lentivirus 
transfection

HSPB7 negatively regulating 
osteogenic differentiation of 
hAD-MSCs

Zhou et al. [86] AD-MSCs AD-MSCs Oxidative stress Transinfected with Let-7c 
inhibitor

Let-7c inhibiting osteogenic 
differentiation of AD by 
targeting SCD-1

Ding et al. [88] AD-MSCs Canines Bone defect Treated with AD-MSCs plus 
PRF

PRF enhancing osteogenic 
potential of AD-MSCs

Na et al. [99] hUC-MSCs hUC-MSCs hUC-MSCs Treated with GSI-I GSI-I reducing osteogenic dif-
ferentiation of hUC-MSCs

Qu et al. [100] hUC-MSCs SD rats Fracture nonunion AKT blocker injection AKT modulating osteogenesis 
induced by hUC-MSCs

Liu et al. [101] UC-MSCs Mice CIA Transplantation Upregulating the impaired 
osteogenic differentiation 
ability in CIA mice

Liang et al. [104] hUC-MSCs Aged rats Age-related osteoporosis Treated with secretome Secretome from hUC-MSCs 
having the capacity to 
recover stem cell potential

Wang et al. [108] hUC-MSCs hBMSCs Without OIM Treated with secretion 
factors

Initiating osteogenic differ-
entiation of hBMSCs without 
OIM

Hendrijantini et al. [111] hUC-MSCs Female Wistar rats Ovariectomy Injection Increasing osteogenic dif-
ferentiation and osteoporotic 
mandibular bone density
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strong local functions in immunoregulation, tissue repair 
or other processes [51].

Similar to BM-MSCs, AD-MSCs have a high amplifica-
tion capacity and multilineage differentiation potential 
[78]; moreover, they are present in adipose tissue, thus 
producing the advantages of being relatively easy and safe 
to obtain and low immunogenicity, and their proliferation 
and differentiation potential are less likely to be affected 
by the age of the donor and the number of passages [79, 
80]. Therefore, the human adult adipose tissue may be the 
most suitable source of MSCs. As confirmed in the previ-
ously reported studies on ovariectomized mouse models 
[81], rabbit models [82], and in  vitro osteogenic experi-
ments involving AD-MSCs [79, 83], AD-MSC-based cell 
transplant therapy can effectively promote the recovery 
of OP in the short term and enhance bone regeneration 
in  vivo. Further studies have revealed that osteogenic 
inducible factors in humans can regulate human adipose-
derived stem cells through the ERK pathway [84], PKA 
pathway [85], and Wnt/β-catenin pathway [86], which 
significantly improves the osteogenic differentiation 
potential of AD-MSCs.

All this indicates that AD-MSCs have the promising 
potential to become a major source for cell transplan-
tation therapy of OP in the future. Nevertheless, the 
attempts clinically made to inject AD-MSCs into where 
OP is present in the patient, are prohibitively difficult and 
of little clinical utility. Therefore, few research teams have 
been registered to conduct clinical trials of AD-MSCs, 
locally or systemically, to treat OP patients.

In recent years, however, it has been gratifying that 
AD-MSCs have been reported to show good results in 
the clinical treatment of joint microfractures [87], bone 
defects [88], osteoarthritis [89]. In the prospective rand-
omized trial, autologous AD-MSCs were injected into the 
joints of patients with knee osteoarthritis for treatment, 
the therapeutic results showing a significant improve-
ment in the patients’ joint mobility, pain, and bone and 
cartilage regeneration within 12  months, and indicating 
the adverse events to be comparable between the experi-
mental group and control in the subsequent follow-ups 
[89]. From the preclinical study on AD-MSCs and their 
clinical applications to some diseases, a clear demonstra-
tion has been shown on their safety and reliability in vivo 
[90].

In view of which, we also believe that AD-MSC-
based cell transplant therapy can be performed as a 
novel therapeutic approach to various orthopaedic dis-
eases, including fractures and cartilage destruction. As 
for the application to OP and to other systemic bone 
diseases, however, quite a number of preclinical stud-
ies are still needed to explore the dosage, mode of 

administration and adverse reactions of the drug in the 
clinical applications.

Human umbilical cord‑derived mesenchymal stem cells
Human umbilical cord mesenchymal stem cells are 
mainly derived from umbilical cord blood, Wharton’s 
jelly, blood vessels and their surrounding tissues [91]. An 
early study showed that many pluripotent MSCs could 
be isolated from UC samples, of which the cells obtained 
from umbilical cord blood were the most abundant, 
and UC-MSCs were more abundant in preterm cord 
blood than in term blood [92]. Since then, UC-MSCs 
have become another important source for the isolation 
of mesenchymal stem cells thanks to their nonharmful 
acquisition mode and few related ethical issues [93].

Biologically, UC-MSCs show advantages over bone 
marrow and adipose-derived stem cells, in terms of low 
immunogenicity, high proliferation and differentiation, 
and excellent anti-inflammatory and other immunomod-
ulatory functions [94–96]. Since 2009, when researchers 
began to commit themselves to exploring the therapeutic 
potential of the allogeneic transplantation of UC-MSCs, 
the successful potential of UC-MSCs in the animal mod-
els and of their clinical application has been promoted 
[97]. UC-MSCs, as a potential cell source for cartilage 
and bone regeneration, are mainly regulated by Wnt [98], 
Notch [99], and AKT signalling [100], among other sig-
nalling pathways, as well as by cytokines such as TNF-α 
[101] that promote the differentiation of MSCs towards 
the osteogenic lineage.

Recent studies have suggested that the efficacy of 
UC-SMCs in disease treatment mainly depends on cell 
secretion [102], and the concentration of active factors 
secreted by UC-MSCs is 10–100 times that of factors 
secreted by BM-MSCs under the same culture condi-
tions [103]. From these cells the secreted active mole-
cules facilitate the restoring of viable cell proliferation 
and differentiation, and contribute to bone remodelling 
in the bone metabolism system. It has been confirmed 
that the secretory group of hUC-MSCs, producing TGF-
β, FGF, VEGF, EGF, etc., has the ability to restore stem 
cell potential and delay local bone loss in age-related OP 
[104]. Nowadays, the application of UC-MSCs to ortho-
paedic diseases is mainly related to the repair of articular 
cartilage, as indicated in a clinical randomized controlled 
trial which demonstrated that the patients who had 
received a local injection of allogeneic UCMSCs showed 
an improvement in pain and function, without serious 
adverse events [105]. Also, UC-MSCs have achieved a 
good curative effect in treating rheumatoid arthritis and 
a good therapeutic effect in repairing bone tissue defects, 
as indicated in a recent retrospective study on the clinical 
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efficacy of hUC‑MSCs in osteonecrosis of the femoral 
head (ONFH), which suggested that arterially infused 
hUC‑MSCs could migrate via the blood to the area of 
femoral head necrosis and differentiate into osteoblasts; 
24 months later, these cells could significantly reduce the 
necrotic volume of the femoral head [106]. Moreover, in a 
study on the application of bone particles combined with 
hUC-MSCs to repair rabbit lumbar bone defects, hUC-
MSCs, when transplanted into the defect area of the ver-
tebral lamina and foot arch, promoted effectively bone 
regeneration there [107]. It was suggested that the loss of 
stem cell function was closely related to the occurrence 
of OP, and that UC-MSCs could present a higher thera-
peutic potential than MSCs derived from other tissues 
[108].

Additionally, the secretion patterns of MSCs from dif-
ferent tissues may be different, the differences indicating 
specificity for different diseases [109]. In the perimeno-
pausal rat models, hUC-MSC therapy could significantly 
delay ovarian aging, thus improving the ovarian reserve 
function [110], and the osteogenic effect of hUC-MSC 
therapy could significantly increase the bone density 
of the osteoporotic mandible [111]. In the case of AD-
MSCs, we still believe that UC-MSCs have a promising 
potential of treating OP clinically, although they have not 
yet been registered for the clinical trials of OP.

Current challenges and safety issues
Currently, MSCs are generally considered safe and 
effective in the animal models, and in the clinical trials, 
no major adverse events have been reported. Admit-
tedly, the stem cells have the potential of self-renewal 
and multilineage differentiation as a unique biological 
characteristic; however, they can give rise to such safety 
problems as the potential for vascular injury [112], vas-
cular embolism [113], infection, immune responses and 
abnormal accumulation of amyloid-β [114], of which the 
most worrisome is the development of tumours induced 
by chromosomal abnormalities. In a rat stroke model, 
cerebral blood flow decreased while the embolic events 
and associated lesion size increased in the rats after the 
intra-arterial cell infusion of MSCs; the occurrence of 
these phenomena seemed to be related to the cell dose 
and the velocity of cell infusion [115]. In a randomized 
multicentre clinical trial where 53 patients with refrac-
tory rheumatoid arthritis were treated with allogeneic 
AD-MSCs, a total of 141 side effects were observed, 
including 1 severe lacunar infarction [116]. Due to the 
characteristics of MSCs and the interference of exter-
nal conditions, the occurrence of tumours cannot be 
completely avoided. In an early study in which mouse 
cancer models were used, the immune cells including 
neutrophils, macrophages and mast cells, were found to 

express MMP-9, contributing to the occurrence of skin 
squamous cell carcinogenesis [117]. Furthermore, MSCs 
were reported to be regulated by a variety of cytokines 
and chemokines in tumour tissues, mediating cell pro-
liferation, angiogenesis, and metastasis [118]. Evidence 
suggests that MSCs can inhibit the growth of tumour 
cells in a healthy microenvironment and that only after 
acquiring tumour-like gene mutations can secrete factors 
to promote tumour progression [119]. In the lung adeno-
carcinoma (A549 cells) experiments conducted in  vitro, 
soluble factors secreted by MSCs in the tumour microen-
vironment could promote the growth and metastasis of 
cancer cells [120]. The reduced tumorigenesis is hypoth-
esised to be related to the methylation of genes in MSCs, 
as indicated in the research where DNA methylation in 
mesenchymal stem cells was found to be capable of regu-
lating the expression and activation of PTEN, promot-
ing osteogenic effects and reducing tumorigenesis [121]. 
Similarly, the abnormal DNA methylation in MSCs could 
affect the progression of myeloma, and the treatment of 
abnormal DNA methylation could exert an antimyeloma 
and osteogenic effect [122].

The clinical application of MSCs has another problem, 
at present, no consensus has been reached on the best 
single dose of MSC injection in clinical practice. In the 
treatment of osteoarthritis, focal cartilage defects, etc., 
studies have suggested that a single high dose (1.0 × 108) 
administered on the patients with osteoarthritis can sig-
nificantly improve the clinical symptoms and therapeutic 
outcomes of radiology and arthroscopy [123]. Surely, the 
efficiency of MSC transplantation needs to be examined 
in the clinical context. In the study of bone tissue repair, 
intramedullary injected MSCs could reach the bone mar-
row quickly, but the apoptosis rate was significantly high 
during the migration to the damaged site; therefore, the 
ultimate number of MSCs at the damaged site was sig-
nificantly small [124]. Although ideal results have been 
achieved in the animal models in which OP was treated, 
the systemic involvement of OP and the existence of 
adverse events associated with MSCs still restrict its clin-
ical application to OP treatment.

Conclusion
OP is a systemic metabolic bone disease characterized 
by low BMD caused by abnormal bone metabolism. At 
present, the clinical approaches mainly involve exer-
cise intervention and drug therapy, the former delay-
ing bone loss in the early stage of the disease, and the 
latter having a therapeutic effect; however, long-term 
drug use can cause serious side effects. So far, great 
progresses have been achieved in the treatment of 
clinical diseases with stem cells, which are charac-
terized by unique biological advantages in terms of 
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proliferation, differentiation, and immune regulation, 
among other properties. However, there are still many 
challenges to be addressed in the practical application 
of MSC therapy. Overall, MSC-based stem cell therapy 
is relatively safe for the treatment of local bone injury. 
Actually, the potential of this method in OP treatment 
is unlimited, but the fate, tumorigenicity and ethi-
cal problems of clinical treatment of stem cells limit 
its clinical application. Further preclinical research is 
needed to clarify its long-term safety and effectiveness. 
With a growing understanding of exosomes, we specu-
late that stem cell-derived exosomes could be used as 
a feasible strategy to replace stem cell therapy to fight 
osteoporosis. Therefore, we suggest that in the near 
future researches much importance should be attached 
to the clinical transformation of mesenchymal stem 
cell therapy and the stem cell-derived exosomes in the 
treatment of OP.
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