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Abstract 

Background:  Ovarian cancer is one of the most common malignancies often resulting in a poor prognosis. 
5-methylcytosine (m5C) is a common epigenetic modification with roles in eukaryotes. However, the expression and 
function of m5C regulatory factors in ovarian cancer remained unclear.

Results:  Two molecular subtypes with different prognostic and clinicopathological features were identified based 
on m5C regulatory factors. Meanwhile, functional annotation showed that in the two subtypes, 452 differentially 
expressed genes were significantly related to the malignant progression of ovarian cancer. Subsequently, four m5C 
genes were screened to construct a risk marker predictive of overall survival and indicative of clinicopathological fea-
tures of ovarian cancer, also the robustness of the risk marker was verified in external dataset and internal validation 
set. multifactorial cox regression analysis and nomogram demonstrated that risk score was an independent prognos-
tic factor for ovarian cancer prognosis.

Conclusion:  In conclusion, our results revealed that m5C-related genes play a critical role in tumor progression in 
ovarian cancer. Further detection of m5C methylation could provide a novel targeted therapy for treating ovarian 
cancer.
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Background
As a malignant tumor seriously threatening women’s 
health, ovarian cancer has the third highest incidence 
among all malignant tumors of the female reproductive 
system, with a mortality rate ranking the first highest [1]. 
According to the statistics, 2,39,000 new cases (3.6% of all 
cancer cases) of ovarian cancer are diagnosed, resulting 
in 1,52,000 deaths (4.3% of all cancer deaths) each year 
[2]. Due to a lack of effective screening strategies, ovar-
ian cancer shows a late onset of clinical symptoms and 
is prone to widespread pelvic and abdominal implanta-
tion and dissemination, therefore approximately 60% of 

ovarian cancer patients are diagnosed at an advanced 
stage [3]. Although surgery, chemotherapy, biological 
therapy and gene therapy are widely applied in the treat-
ment of ovarian cancer [4], the 5-year survival rate for 
ovarian cancer patients still remains as low as 35–38% 
[5]. Therefore, exploring the mechanism of ovarian can-
cer is important for the early detection, diagnosis and 
treatment of ovarian cancer [6–8].

Epigenetic modifications, which mainly include DNA 
methylation and histone modifications, are chemi-
cal alterations in nucleic acids that do not change DNA 
sequence but play a key role in genetics, growth, longev-
ity, aging and diseases [9, 10]. DNA 5-methylcytosine 
(m5C), which is the most abundant DNA modification 
in mammalian cells, is characterized by the addition 
of a methyl group to the carbon-5 position of cytosine 
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base [11]. In recent years, knowledge of RNA modifica-
tions has been greatly expanded from fine-tuned chemi-
cal structural features of non-protein-coding RNAs to 
dynamically regulated, reversible, post-transcriptional 
regulators that are widely present in a variety of cellu-
lar processes [12]. Mammalian RNA methylation modi-
fications mainly include N6-methyladenosine (m6A), 
N1-methyladenosine (m1A), pseudouridine (Ψ) and 
m5C, but previous studies on RNA methylation mainly 
focuse on m6A [12, 13]. However, new evidence gradu-
ally revealed the role in m5C in post-transcriptional 
regulation.

5-methylcytosine methylation involves a range of regu-
lators, including m5C methyltransferases, demethylases 
and “readers”. The methyltransferase “writer” complex 
increases methylation at the C5 position of the RNA, and 
then a different “reader” protein recognizes and binds the 
methylated mRNA, while the “eraser” protein reverses 
the m5C modification by degrading the written meth-
ylation [14]. In addition, to date, m5C modification has 
been shown to play a key role in the pathogenesis of blad-
der cancer [15], hepatocellular carcinoma (HCC) [16], 
glioblastoma multiforme (GBM) [17] and leukemia [18]. 
The above results suggest a promising function of m5C 
modification in cancer therapy. However, specific genetic 
signature and prognostic significance of m5C-related 
regulators in ovarian cancer remained to be discovered.

In the present study, two molecular subtypes of ovar-
ian cancer were identified from TCGA ovarian cancer 
samples based on 13 m5C-regulated genes, which were 
found to be closely associated with clinicopathological 
features. In addition, the changes observed in m5C regu-
latory genes were significantly associated with a higher 
tumor stage. Based on the least absolute shrinkage and 
selection operator (LASSO) and multivariate cox regres-
sion model, we constructed a gene signature of m5C 
regulators to effectively predict the prognosis of ovarian 
cancer patients. In conclusion, we detected changes in 
m5c-related genes capable of affecting some key regula-
tory molecules, which contribute to ovarian cancer pro-
gression (Fig. 1).

Results
Non‑negative matrix factorization analysis 
of m5C‑regulatory genes
Based on the 13 identified m5C-regulatory gene expres-
sion profiles from 347 patients with ovarian cancer in 
the TCGA dataset, non-negative matrix factorization 
analysis was conducted to identify two subtypes, namely, 
C1 and C2 (Fig.  2A), according to three index, cophe-
netic, dispersion and silhouette (Fig.  2B). Moreover, we 
found significant differences in overall survival (OS) and 
disease-specific survival (DSS) between the two groups 

(p  =  0.0027 and p  =  0.0063; Fig.  2C, D). The survival 
of patients in the C1 subtype was obviously shorter than 
those in the C2 subtypes. These results indicated that 
consensus clustering of m5C regulatory factors could 
identify ovarian cancer subtypes with different prognosis.

The interrelation of m5C‑associated molecular subtypes 
and clinicopathological characteristics of patients 
with ovarian cancer
We compared the distribution of different clinical fea-
tures in the two molecular subtypes, and determined 
whether the clinical features were different in different 
subtypes. The results showed that the death rate of the 
C1 subgroup with poor prognosis was higher (Fig.  3A). 
There was no significant difference in stage, grade or age 
between the two subtypes (Fig. 3B–D).

The immune cell score between the two molecular 
subtypes showed that memory B cells and eosinophil 
immune-related cells were significantly higher in C1 than 
C2, and that activated CD4 T cells, activated CD8 T cells, 
type 1 T helper cells, type 2 T helper cells and CD56dim 
natural killer cell were lower in C1 than C2 (Fig. 3E, F). At 
the same time, the expression of 13 M5C related genes in 
the two subtypes were analyzed. In addition to NSUN4, 
NSUN5 and DNMT3B genes, the remaining 9 genes were 
significantly differentially expressed in the two subtypes 
(Fig. 3G).

Construction of the risk score signature by four 
m5C‑regulatory genes
Firstly, the differential expression of genes between 
molecular subtypes was determined using the limma 
package. According to the threshold FDR  <  0.05 and 
|log2FC| >  log2(1.5), 354 up-regulated and 98 down-reg-
ulated genes were identified (Fig. 4A, B).

Furthermore, KEGG pathway analysis and GO func-
tional enrichment analysis of differentially expressed 
genes were performed using the R software package 
WebGestaltR (V0.4.2). The GO function annotation 
showed 99 items with significant difference from CC 
(Additional file 1: Figure S1A) and 57 items with signifi-
cant difference from MF (Additional file  1: Figure S1B). 
The KEGG pathway was enriched to 19 significant path-
ways (Additional file 1: Figure S1C), including the Notch 
signaling pathway, ECM-receptor interaction, focal 
expression and PI3K-Akt signaling pathway and other 
tumor-related pathways.

We further explored the performance of 452 genes in 
predicting ovarian cancer prognosis through univariate 
survival analysis using cox proportional hazards mod-
els based on expression levels in the TCGA training 
dataset, and here we obtained eight genes associated 
with prognosis. To improve the robustness of the eight 
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m5C-regulatory genes, these genes were subjected to the 
least absolute shrinkage and selection operator (LASSO) 
cox regression algorithm in the TCGA training dataset 
(Fig.  4C, D). Four m5C-regulatory genes were screened 
to construct a risk score signature, a the formula for the 
risk score was as follow: 

To better understand the role of these four prognos-
tic genes in ovarian cancer, K-M analysis was performed 
both in the TCGA training dataset, in which samples 
were classified by high or low expression according to 
the median gene expression level. FCGBP and CLDN10 
genes were found to be significantly correlated with OS 
(Additional file 2: Figure S2).

To evaluate the performance of the risk score sig-
nature in predicting the clinical outcomes of ovarian 

RiskScore = 0.1452663
∗
FCGBP + 0.1300001

∗
HOXB

− 0.1675289
∗
TYMSO− 0.1130089

∗
CLDN10.

cancer patients, and the median score of all patients’ 
scores was used as a standard to divide the data in the 
TCGA training dataset into high- and low-risk groups. 
Our analyses indicated that the number of patients who 
died increased significantly as the risk score increased, 
and that FCGBP and HOXB3 acted as risk factors, 
while TYMSOS and CLDN10 were protective factors 
(Fig.  5A). The area under the ROC curve (AUC) of 
prognostic risk scores for 1-, 3-, and 5-year were 0.71, 
0.7 and 0.6, respectively (Fig.  5B). In addition, there 
was a significant difference in overall survival between 
the high-risk group and low-risk group (p  =  0.0011; 
Fig. 5C).

The robustness of the prognostic of the risk score signature 
in predicting ovarian cancer prognosis
To examine the robustness of the risk score signature in 
clinical outcomes of ovarian cancer patients, TCGA test 

Fig. 1  Work flow chart
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dataset and entire TCGA dataset samples were assigned 
into high- and low-risk groups. The analyses indicated 
that the number of patients who died increased sig-
nificantly as the risk score increased, and that FCGBP 
and HOXB3 acted as risk factors, while TYMSOS and 
CLDN10 were protective factors (Fig. 6A, D). The area 
under the ROC curve (AUC) of prognostic risk scores 

for 1-, 3-, and 5-year were also higher (Fig.  6B, E). In 
addition, there was also a significant difference in over-
all survival between the high-risk group and low-risk 
group (p  =  0.0011; Fig. 6C, F).

Multivariate cox survival analysis was performed 
in the external validation dataset GSE30161 using the 
same genes as in the training set model, and then the 

Fig. 2  Non-negative matrix factorization analysis of m5C-regulatory genes. A Non-negative matrix factorization analysis was conducted to identify 
two subtypes, namely C1 and C2. B Three index, cophenetic, dispersion and silhouette. C Significant differences was observed in overall survival 
(OS) and disease-specific survival (DSS) between the two groups. D Significant differences was observed in disease-specific survival (DSS) between 
the two groups
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Fig. 3  The interrelation of m5C-associated molecular subtypes and clinicopathological characteristics in patients with ovarian cancer. A The 
death rate of the C1 subgroup with poor prognosis was higher. B–D There was no significant difference in stage, grade and age between the two 
subtypes. E, F C1 was significantly higher than C2 in memory B cell and eosinophil immune-related cells, and lower than C2 in activated CD4 T cell, 
activated CD8 T cell, type 1 T helper cell, type 2 T helper cell and CD56dim natural killer cell. G the expression of 13 M5C related genes in the two 
subtypes
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RiskScore of each sample was calculated separately 
according to the expression level of the samples to plot 
RiskScore distribution of the samples. The proportion 
of deaths in samples with high RiskScore was signifi-
cantly higher than that in samples with low RiskScore, 
which was consistent with the predicting performance 
on the TCGA training set (Additional file  3: Figure 
S3A). The area under the ROC curve (AUC) of prog-
nostic risk scores for 1-, 3-, and 5-years were 0.63, 0.74 
and 0.75, respectively (Additional file  3: Figure S3B). 

In addition, there was a significant difference in over-
all survival between the high-risk group and low-risk 
group (p  =  0.0016; Additional file 2: Figure S3C). From 
the comprehensive analyses above, it could be con-
cluded that the prognostic predicting performance of 
the risk score was accurate and stable.

Fig. 4  Construction of the risk score signature by four m5C-regulatory genes. A Volcano plot of differentially expressed genes. B Heatmap 
of differentially expressed genes. C The change trajectory of each independent variable, the horizontal axis represents the log value of the 
independent variable lambda, and the vertical axis represents the coefficient of the independent variable; D the confidence interval under each 
lambda
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Risk model and clinical feature prognostic analysis
We also found that the 4-gene signature could signifi-
cantly differentiate the high- and low-risk groups by 
age, Stage III, G3  +  G4, recurrence or not, and chem-
otherapy samples (Fig.  7; p  <  0.05), further indicating 
that the model still had an equally strong predictive 
power across different clinical characteristics.

The distribution of the RiskScore among the clinical 
characteristic subgroups was compared, and there was 
no significant difference in the RiskScore in the stage 
and grade subgroups (Fig.  8B, C; p  > 0.05). RiskScore 
showed a significant difference between age group and 
chemotherapy group (Fig.  8; p  <  0.05). At the same 
time, after comparing the difference of risk scores in 
molecular subtypes, it was observed that the risk score 
of C1 subtype with poor prognosis was significantly 
higher than that of C2 molecular subtype with good 
prognosis. The difference between the existing molecu-
lar subtypes Risk scores also had significant differences 
(Fig. 8B, C; p  < 0.05).

Independent prognostic factor evaluation and correlation 
with clinical characteristics
We also investigated whether this risk score was an inde-
pendent prognostic factor based on four clinicopatholog-
ical features. Univariate and multivariate cox regression 
analyses were performed with the TCGA dataset. It was 
found that the risk score, age, and chemotherapy were 
significantly correlated with prognosis using the uni-
variate analysis (Fig. 9A). Multivariate analysis based on 
the above factors was performed, the data showed that 
risk score, age, and chemotherapy were strongly associ-
ated with the OS (Fig.  9B). The consensus results dem-
onstrated that the risk score constructed by the four 
m5C-regulatory genes was an effective and independent 
prognostic factor for predicting ovarian cancer outcome.

We next developed a prognostic nomogram to exam-
ine the relationship between clinical traits and RiskScore 

Fig. 5  Predictive effect of the risk score. A RiskScore, survival time and survival status and 4 mRNAs expression of each samples in TCGA training set. 
B Classification ROC curve and AUC of 4-mRNA signature in TCGA training set. C KM survival curve of 4-mRNA signature in the TCGA training set
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Fig. 6  Robustness of risk models. A RiskScore, survival time and survival status and 4 mRNAs expression of each samples in TCGA test dataset. B 
Classification ROC curve and AUC of 5-miRNA signature in TCGA test dataset. C KM survival curve of 4-mRNA signature in the TCGA test dataset. D 
RiskScore, survival time and survival status and 4 mRNAs expression of each samples in entire TCGA dataset. E Classification ROC curve and AUC of 
4-mRNA signature in entire TCGA dataset. F KM survival curve of 5-miRNA signature in the entire TCGA dataset
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in TCGA cohort, and found that RiskScore characteris-
tics showed the greatest impact on survival prediction 
(Fig.  9C). The prediction accuracy of the calibration 

curve evaluation model showed that the predicted cali-
bration curves for the three calibration points at 1, 3 and 
5 years were close to coinciding with the standard curve 

Fig. 7  Risk model and clinical features prognostic analysis

Fig. 8  The distribution of the RiskScore among the clinical characteristic subgroups
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(Fig.  9D), which suggested that the model had a high 
prediction performance. In addition, after evaluating 
the reliability of the model using DCA (decision curve), 

it was found that the accuracy of RiskScore and nomo-
gram were significantly higher than the extreme curves, 
specifically, the nomogram was higher than RiskScore, 

Fig. 9  Independent prognostic factor evaluation and correlation with clinical characteristics. A Results of univariate analysis of clinical 
characteristics and RiskScore. B Results of multivariate analysis of clinical characteristics and RiskScore. C A nomogram constructed by RiskScore and 
clinical features; D A correction chart for survival rate of the nomogram; E DCA curve
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and age and chemotherapy were close to the extreme 
curves (Fig. 9E). This indicated that both RiskScore and 
nomogram were highly reliable. In addition, in order to 
compare prognostic differences among pathological sub-
types of ovarian cancer, we evaluated the classification 
performance of high-grade and low-grade serous ovar-
ian cancer using subtype-specific genes. Specifically, we 
selected GSE140082 as the validation set, and the GEO 
data set included 211 cases of high-grade serous ovarian 
cancer and 63 cases of low-grade serous ovarian cancer. 
Based on the risk model, we calculate the risk scores of 
high-grade serous carcinoma and low-grade serous car-
cinoma respectively, and divide the patients into low-risk 
groups. The results show that there is a significant differ-
ence between high- and low-risk group in the progno-
sis of high-grade serous carcinoma patients (Additional 
file 4: Figure S4A–C). In low-grade serous carcinoma, the 
expression trend of the four characteristic genes is con-
sistent with expression of TCGA, but the prognosis is not 
significant (Additional file 4: Figure S4D–F). These results 
suggest the existence of different molecular features for 
different pathological subtypes, and the identification of a 
new molecular staging of high-grade serous ovarian can-
cer based on m5c-related genes is a new molecular stag-
ing that is distinct from and can be complementary to the 
traditional clinical staging.

Discussion
The important role of aberrant RNA epigenetic modifi-
cations in tumorigenesis, progression, and patient prog-
nosis has been increasingly confirmed, pointing to a 
potential application of epigenetic modifiers in the diag-
nosis and prognosis of ovarian cancer. In the past, a large 
number of reports on ovarian cancer and 5-methylcyto-
sine have focused on DNA methylation, which is consid-
ered as an ideal diagnostic biomarker for tumors [19–21]. 
Specifically, compared with normal ovarian tissues, a sig-
nificant promotion in 5-mC expression in EOC is corre-
lated with pathologic stage, tumor grading, lymph node 
metastasis, and vascular thrombosis [19]. This study 
focused on RNA epigenetic modification, and by detect-
ing the abnormal expression of m5C-related regulatory 
factors, m5C was found to be involved in the occurrence 
and development of ovarian cancer and was related to 
the cancer prognosis. By analyzing the expression pro-
files of m5C regulatory factors from two open databases 
(TCGA and GEO databases), two subtypes with different 
clinicopathological characteristics and prognosis were 
identified. In addition, the subtypes were closely related 
to tumor-related clinical features and immune infiltra-
tion. According to the differentially expressed genes 
between the molecular subtypes, a related risk scoring 

algorithm was constructed to divide ovarian cancer 
patients into high-risk groups and low-risk groups, and 
could accurately predict the clinical outcome of ovarian 
cancer patients. In addition, univariate and multivariate 
cox regression analysis showed that RiskScore was an 
independent prognostic factor for patients with ovarian 
cancer. The four m5C regulatory factors can be used as 
an effective prognostic marker to stratify ovarian cancer 
patients according to risk score, providing new insights 
for targeted therapy.

The four m5C regulators have been previously reported 
to be involved in the progression of malignant tumors. 
According to the latest literature, study revealed that 
FCGBP participates in the development of gastric neo-
plasm [22], and is also a key regulatory factor in the 
epithelial-mesenchymal transformation process of gall-
bladder cancer metastasis and prognosis [23]. Recently, 
a paper also showed that FCGBP is high-expressed 
in ovarian cancer in GSE12470 and GSE40595, and 
high-expressed FCGBP is significantly correlated with 
immune-related gene sets. Moreover, FCGBP also con-
tributes to M2 macrophage polarization by acting as an 
oncogene in ovarian cancer [24]. Overexpressed HOXB3 
in various cancers promotes tumor progression [25–27]. 
The mRNA and protein expressions of HOXB3 are sig-
nificantly upregulated in primary prostate cancer tissues 
compared with the adjacent normal prostate tissues. Fur-
thermore, overexpression of HOXB3 increases prostate 
cancer proliferation through transcriptional activation of 
cell division cycle associated 3 [28]. Multivariate analysis 
demonstrated that HOXB3 (HR  =  1.09, 95% CI 1.01–
1.17, p  =  0.027) overexpression is closely associated with 
shorter PFS, and HOXB3 overexpression decreased the 
sensitivity of ovarian cancer to cisplatin and attenuates 
the generation of cisplatin-induced ROS [29]. CLDN10 is 
upregulated in hepatocellular carcinoma (HCC) tissues, 
and patients with higher CLDN10 protein level prone to 
develop a poor prognosis [30]. CLDN10 also promotes 
papillary thyroid cancer cell growth and invasion, simi-
larly, patients in high-expressed CLDN10 group show 
a worse prognosis [31]. In ovarian cancer, a low expres-
sion level of CLDN10 is associated with a less favora-
ble prognosis [32]. As for TYMSOS, there is no report 
on its relationship with tumor or related mechanism, 
which therefore requires further study. To the best of our 
knowledge, the current study is the first to correlate these 
genes with the prognosis and clinical characteristics of 
ovarian cancer, providing evidence for further study of its 
molecular mechanisms.

The results of this study showed that memory B cell and 
eosinophil cell infiltration was significantly increased in 
the high-risk score group (C1), while activated CD4 T cell, 
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activated CD8 T cell, type 1 T helper cell, type 2 T helper 
cell, and CD56dim natural killer cell infiltration were sig-
nificantly increased in the low-risk score group (C2). Study 
considered eosinophil infiltration as indicative of an unfa-
vorable prognosis in colorectal, breast and prostate cancers 
[33], and this may help explain the increased eosinophil 
cell infiltration observed in the high-risk score group. In 
contrast, a local increase in the density of CD8  +  T-cell 
infiltration in tumors is a marker of a favorable prognosis, 
which may explain the increased CD8 + T-cell infiltration 
observed in the lower risk score group with a better prog-
nosis. The infiltration of these cells reflects the immune 
microenvironment of breast cancer and may also predict 
prognosis.

This study applied a combination of multiple sets, mul-
tiple data sets, and multiple analyses to examine the 
robustness of our results. However, there are still cer-
tain limitations in this study and further improvement is 
needed. Although this study included two study cohorts, 
our findings should be confirmed in a separate cohort. Fur-
ther basic experiments are indispensable in revealing the 
molecular mechanism of m5C regulators in ovarian cancer 
progression and in further testing test the predictive effi-
cacy of this feature for clinical application.

Conclusion
In conclusion, our study found that 4 m5C-related genes 
were significantly associated with prognosis of ovarian can-
cer patients, therefore, the 4-gene signature with clinico-
pathological characteristics could be a useful biomarker for 
predicitng the prognosis of ovarian cancer.

Methods
Ovarian cancer dataset acquisition and process
All ovarian cancer mRNA expression profiles and corre-
sponding clinical data used in our study were downloaded 
from the TCGA data portal (http://​gdc-​portal.​nci.​nih.​gov/) 
and gene expression omnibus (GEO) (GSE30161 dataset). 
We collected clinical data of 347 cases of ovarian cancer 
from TCGA. The inclusion criteria were specifically as fol-
lows: ovarian cancer samples with clinical follow-up infor-
mation, transcriptome data, and clinical stage III and IV. In 
GSE30161 dataset, 58 ovarian cancer samples with clinical 
information were retrieved. The clinical statistics of the 
samples are shown in Table 1.

Identification of molecular subtypes
Based on the expression of 13 m5C regulators, 347 ovarian 
cancer samples were clustered by the non-negative matrix 
clustering algorithm (NMF), which was based on the 
standard “brunet” and performed 50 iterations. The num-
ber of clusters k was set from 2 to 10.

Immunological infiltration analysis between molecular 
subtypes
MCPcounter was used to evaluate the scores of 10 
immune cells. The scores of 28 immune cells were deter-
mined by SSGSEA method of GSVA package [34].

Identification of differentially expressed genes
Limma packets [35] were used to calculate the differen-
tially expressed genes between tumor and normal in the 
TCGA dataset, according to the threshold of FDR  <  0.05 
and |log2FC|  >  1.5.

Sample grouping
Firstly, 347 tumor samples from the TCGA data set were 
divided into training set and validation set. To avoid ran-
dom allocation bias that may affect the stability of sub-
sequent modeling, all the samples were put back into 
random groups for 100 times in advance. Here, grouping 
sampling was conducted in accordance with the ratio of 
training set: validation set  =  1:1. The two groups were 
similar in terms of stage, grade, and OS. There are 174 
samples in the final TCGA training set and 173 samples 
in the TCGA test set (Table 2). Chi-square test was used 
to test the training set and test set samples, and there was 
no significant difference between groups (p  >  0.05).

Cox risk analysis for univariate survival
Univariate cox proportional risk regression models were 
performed using the R package survival coxph function 

Table 1  Clinical information of the samples

Clinical features TCGA-OV GSE30161

OS

 0 125 22

 1 222 36

Stage

 III 290 15

 IV 57 43

Grade

 G1 1

 G2 35

 G3 302

 G4 1

 GX 8

Stage

 III 290 15

 IV 57 43

Gender

 ≤ 60 192 25

 > 60 155 33

http://gdc-portal.nci.nih.gov/
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[36] for each differential mRNA and survival data in the 
TCGA training set data, with p  <  0.05 as the threshold 
value.

Model construction
Based on the genes obtained from the univariate cox 
analysis, genes were further compressed by LASSO cox 
regression using the R package glmnet to reduce the 
number of genes in the risk model. In addition, step-
wise regression applied the AIC red pool information 
criterion, which takes into account the statistical fit of 
the model and the number of parameters. The stepAIC 
method in the MASS package starts with the most com-
plex model and sequentially removes a variable to reduce 
the AIC, with a smaller value indicating a more efficient 
model. Combining the expression of each prognosis-
related genes, we developed an independent prognosis 
model. The RiskScore was calculated using the following 
formula:

RiskScore  =  0.1452663*FCGBP  +  0.1300001*HOXB 
− 0.1675289*TYMSO − 0.1130089*CLDN10.

Evaluation of the Riskcore in TCGA cohort and GEO dataset
According to our prognostic model, each patient in the 
TCGA test cohort, the entire TCGA dataset and GSE30161 
dataset was assigned a risk score. In each cohort, we used 
the median risk score as a cutoff to classify lung adenocar-
cinoma patients into high-risk and low-risk groups. Sur-
vival curves were plotted using the Kaplan–Meier (KM) 
method, and log-rank tests were performed to assess the 
difference in survival between the high-risk and low-risk 
groups. The receiver operating characteristic curve (ROC) 
was established using the “timeROC” software package 
[37], and the area under the curve (AUC) value was calcu-
lated to evaluate the specificity and sensitivity of the model. 

In addition, a prognostic nomogram based on the cox pro-
portional hazards regression model was performed to visu-
alize the relationship between individual predictors and 
survival of lung cancer patients by using the “rms” package 
of R software [38]. The performance of the prognostic line 
graph was evaluated by C index and calibration curves.

To further assess whether our model could be used as an 
independent prognostic factor, age, sex, stage, T, M, and 
N were regarded as independent variables. Then univari-
ate cox regression analyses and multivariate cox regression 
analyses were performed to detect the changes in survival 
time and survival outcomes.
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Table 2  Classification information of TCGA sample

Clinical 
Features

TCGA-train TCGA-test P

OS

 0 59 66 1

 1 115 107

Stage

 III 148 142 1

 IV 26 31

Grade

 G1 0 1 0.09157819

 G2 18 17

 G3 152 150

 G4 0 1

https://doi.org/10.1186/s40659-021-00340-8
https://doi.org/10.1186/s40659-021-00340-8


Page 14 of 14Wang and Gao ﻿Biol Res           (2021) 54:18 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

References
	1.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 

2020;70(1):7–30.
	2.	 Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolu-

tion of management in the era of precision medicine. CA Cancer J Clin. 
2019;69(4):280–304.

	3.	 Berek JS, Crum C, Friedlander M. Cancer of the ovary, fallopian tube, and 
peritoneum. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet. 
2015;131(Suppl 2):S111-22.

	4.	 Feng Z, Wen H, Bi R, Yang W, Wu X. Prognostic impact of the time interval 
from primary surgery to intravenous chemotherapy in high grade serous 
ovarian cancer. Gynecol Oncol. 2016;141(3):466–70.

	5.	 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 
2016;66(1):7–30.

	6.	 Salani R, Backes FJ, Fung MF, Holschneider CH, Parker LP, Bristow RE, et al. 
Posttreatment surveillance and diagnosis of recurrence in women with 
gynecologic malignancies: Society of Gynecologic Oncologists recom-
mendations. Am J Obstet Gynecol. 2011;204(6):466–78.

	7.	 Zhao H, Guo E, Hu T, Sun Q, Wu J, Lin X, et al. KCNN4 and S100A14 act as 
predictors of recurrence in optimally debulked patients with serous ovar-
ian cancer. Oncotarget. 2016;7(28):43924–38.

	8.	 Wu DD, Chen X, Sun KX, Wang LL, Chen S, Zhao Y. Role of the lncRNA 
ABHD11-AS(1) in the tumorigenesis and progression of epithelial ovarian 
cancer through targeted regulation of RhoC. Mol Cancer. 2017;16(1):138.

	9.	 Chen Y, Hong T, Wang S, Mo J, Tian T, Zhou X. Epigenetic modification of 
nucleic acids: from basic studies to medical applications. Chem Soc Rev. 
2017;46(10):2844–72.

	10.	 Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity 
and aging. Cell. 2016;166(4):822–39.

	11.	 Bestor TH. Cloning of a mammalian DNA methyltransferase. Gene. 
1988;74(1):9–12.

	12.	 Jonkhout N, Tran J, Smith MA, Schonrock N, Mattick JS, Novoa 
EM. The RNA modification landscape in human disease. RNA. 
2017;23(12):1754–69.

	13.	 Roundtree IA, Evans ME, Pan T, He C. Dynamic RNA modifications in gene 
expression regulation. Cell. 2017;169(7):1187–200.

	14.	 Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, 
enzymatic formation and biological functions. Nucleic Acids Res. 
2010;38(5):1415–30.

	15.	 Chen X, Li A, Sun BF, Yang Y, Han YN, Yuan X, et al. 5-methylcytosine pro-
motes pathogenesis of bladder cancer through stabilizing mRNAs. Nat 
Cell Biol. 2019;21(8):978–90.

	16.	 He Y, Yu X, Li J, Zhang Q, Zheng Q, Guo W. Role of m(5)C-related regula-
tory genes in the diagnosis and prognosis of hepatocellular carcinoma. 
Am J Transl Res. 2020;12(3):912–22.

	17.	 Cheray M, Etcheverry A, Jacques C, Pacaud R, Bougras-Cartron G, Aubry 
M, et al. Cytosine methylation of mature microRNAs inhibits their func-
tions and is associated with poor prognosis in glioblastoma multiforme. 
Mol Cancer. 2020;19(1):36.

	18.	 Cheng JX, Chen L, Li Y, Cloe A, Yue M, Wei J, et al. RNA cytosine methyla-
tion and methyltransferases mediate chromatin organization and 
5-azacytidine response and resistance in leukaemia. Nat Commun. 
2018;9(1):1163.

	19.	 Zhang LY, Li PL, Wang TZ, Zhang XC. Prognostic values of 5-hmC, 
5-mC and TET2 in epithelial ovarian cancer. Arch Gynecol Obstet. 
2015;292(4):891–7.

	20.	 Cao T, Pan W, Sun X, Shen H. Increased expression of TET3 predicts 
unfavorable prognosis in patients with ovarian cancer-a bioinformatics 
integrative analysis. J Ovarian Res. 2019;12(1):101.

	21.	 Iglesias González T, Blanco-González E, Montes-Bayón M. New strategy to 
address DNA-methyl transferase activity in ovarian cancer cell cultures by 
monitoring the formation of 5-methylcytosine using HPLC-UV. J Chroma-
togr, B: Anal Technol Biomed Life Sci. 2016;1028:16–24.

	22.	 Rajkumar T, Vijayalakshmi N, Gopal G, Sabitha K, Shirley S, Raja UM, et al. 
Identification and validation of genes involved in gastric tumorigenesis. 
Cancer Cell Int. 2010;10:45.

	23.	 Xiong L, Wen Y, Miao X, Yang Z. NT5E and FcGBP as key regulators of TGF-
1-induced epithelial-mesenchymal transition (EMT) are associated with 
tumor progression and survival of patients with gallbladder cancer. Cell 
Tissue Res. 2014;355(2):365–74.

	24.	 Wang K, Guan C, Shang X, Ying X, Mei S, Zhu H, et al. A bioinformatic 
analysis: the overexpression and clinical significance of FCGBP in ovarian 
cancer. Aging. 2021;13(5):7416–29.

	25.	 Cui M, Chen M, Shen Z, Wang R, Fang X, Song B. LncRNA-UCA1 modu-
lates progression of colon cancer through regulating the miR-28–5p/
HOXB3 axis. J Cell Biochem. 2019;120:6926.

	26.	 Yang D, Yan R, Zhang X, Zhu Z, Wang C, Liang C, et al. Deregulation of 
MicroRNA-375 inhibits cancer proliferation migration and chemosensitiv-
ity in pancreatic cancer through the association of HOXB3. Am J Transl 
Res. 2016;8(3):1551–9.

	27.	 Bi L, Zhou B, Li H, He L, Wang C, Wang Z, et al. A novel miR-375-HOXB3-
CDCA3/DNMT3B regulatory circuitry contributes to leukemogenesis in 
acute myeloid leukemia. BMC Cancer. 2018;18(1):182.

	28.	 Chen J, Zhu S, Jiang N, Shang Z, Quan C, Niu Y. HoxB3 promotes 
prostate cancer cell progression by transactivating CDCA3. Cancer Lett. 
2013;330(2):217–24.

	29.	 Miller KR, Patel JN, Zhang Q, Norris EJ, Symanowski J, Michener C, et al. 
HOXA4/HOXB3 gene expression signature as a biomarker of recurrence 
in patients with high-grade serous ovarian cancer following primary 
cytoreductive surgery and first-line adjuvant chemotherapy. Gynecol 
Oncol. 2018;149(1):155–62.

	30.	 Sun H, Cui C, Xiao F, Wang H, Xu J, Shi X, et al. miR-486 regulates 
metastasis and chemosensitivity in hepatocellular carcinoma by 
targeting CLDN10 and CITRON. Hepatol Res Off J Jpn Soc Hepatol. 
2015;45(13):1312–22.

	31.	 Zhou Y, Xiang J, Bhandari A, Guan Y, Xia E, Zhou X, et al. CLDN10 
is associated with papillary thyroid cancer progression. J Cancer. 
2018;9(24):4712–7.

	32.	 Li Z, Xuan W, Huang L, Chen N, Hou Z, Lu B, et al. Claudin 10 acts as a 
novel biomarker for the prognosis of patients with ovarian cancer. Oncol 
Lett. 2020;20(1):373–81.

	33.	 Sakkal S, Miller S, Apostolopoulos V, Nurgali K. Eosinophils in cancer: 
favourable or unfavourable? Curr Med Chem. 2016;23(7):650–66.

	34.	 Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder 
D, et al. Pan-cancer immunogenomic analyses reveal genotype-immu-
nophenotype relationships and predictors of response to checkpoint 
blockade. Cell Rep. 2017;18(1):248–62.

	35.	 Xu Z, Wang Z, Sun H, Xin H. Evaluation of exosomal miRNA in blood as 
a potential diagnostic biomarker for human non-small cell lung cancer. 
Med Sci Monit Int Med J Exp Clin Res. 2020;26:e924721.

	36.	 Bhattacharjee A, Rajendra J, Dikshit R, Dutt S. HER2 borderline is a nega-
tive prognostic factor for primary malignant breast cancer. Breast Cancer 
Res Treat. 2020;181(1):225–31.

	37.	 Zhang C, Zheng Y, Li X, Hu X, Qi F, Luo J. Genome-wide mutation profiling 
and related risk signature for prognosis of papillary renal cell carcinoma. 
Ann Transl Med. 2019;7(18):427.

	38.	 McCool R, Wilson K, Arber M, Fleetwood K, Toupin S, Thom H, et al. Sys-
tematic review and network meta-analysis comparing ocrelizumab with 
other treatments for relapsing multiple sclerosis. Mult Scler Relat Disord. 
2019;29:55–61.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Identification of 5-methylcytosine-related signature for predicting prognosis in ovarian cancer
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results
	Non-negative matrix factorization analysis of m5C-regulatory genes
	The interrelation of m5C-associated molecular subtypes and clinicopathological characteristics of patients with ovarian cancer
	Construction of the risk score signature by four m5C-regulatory genes
	The robustness of the prognostic of the risk score signature in predicting ovarian cancer prognosis
	Risk model and clinical feature prognostic analysis
	Independent prognostic factor evaluation and correlation with clinical characteristics

	Discussion
	Conclusion
	Methods
	Ovarian cancer dataset acquisition and process
	Identification of molecular subtypes
	Immunological infiltration analysis between molecular subtypes
	Identification of differentially expressed genes
	Sample grouping
	Cox risk analysis for univariate survival
	Model construction
	Evaluation of the Riskcore in TCGA cohort and GEO dataset

	Acknowledgements
	References




