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Abstract 

Background:  A number of dysregulated miRNAs have been identified and are proposed to have significant roles in 
the pathogenesis of type 2 diabetes mellitus or renal pathology. Alpinia oxyphylla has shown significant anti-inflam-
matory properties and play an anti-diabetes role. The objective of this study was to detect the alteration of miRNAs 
underlying the anti-diabetes effects of A. oxyphylla extract (AOE) in a type II diabetic animal model (C57BIKsj db-/db-).

Results:  Treatment with AOE for 8 weeks led to lower concentrations of blood glucose, urine albumin, and urine 
creatinine. 17 and 13 miRNAs were statistically identified as differentially regulated in the DB/DB and db-/db- AOE 
mice, respectively, compared to the untreated db-/db- mice. Of these, 7 miRNAs were identified in both comparison 
groups, and these 7 miRNAs were verified by quantitative real-time PCR. Functional bioinformatics showed that the 
putative target genes of 7 miRNAs were associated with several diabetes effects and signaling pathways.

Conclusions:  These founding suggest that the potential of AOE as a medicinal anti-diabetes treatment through 
changes in the expressions of specific miRNAs. The results provide a useful resource for future investigation of the role 
of AOE-regulated miRNAs in diabetes mellitus.
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Background
The incidence of diabetes mellitus (DM) is projected to 
rise to 439 million by 2030, making it among the most 
important public health challenges [1]. Diabetic nephrop-
athy (DN), diabetes with albuminuria and/or impaired 
glomerular filtration rate [2], results in one-third of 
all type 2 DM (T2DM) patients and is the single most 
important cause of end-stage renal disease [3, 4]. Inflam-
mation appears to be the final common pathway in the 
development and progression of renal fibrosis [5, 6]. The 
db-/db- mutant mouse is a rodent model of genetic dia-
betes that develops renal glomerular lesions with striking 

mesangial matrix accumulation by the age of 16  weeks 
after 8–10 weeks of sustained hyperglycemia [7].

miRNAs are small non-coding regulatory RNAs (20–
22 nucleotides) that play a key role in regulating numer-
ous biological processes, as well as in the pathology of 
diseases [8]. In previous studies, miRNA expression 
profiling was often performed, including determining 
the circulating miRNAs in DM patients or the miRNAs 
in different animal-model tissues [9–11]. A number of 
dysregulated miRNAs were identified and are proposed 
to have significant roles in the pathogenesis of T2DM 
or renal pathology [11, 12]. Recent studies have shown 
that several miRNAs can promote the accumulation of 
extracellular matrix proteins related to fibrosis and glo-
merular dysfunction [13]; however, few miRNAs might 
actually be exploited as biomarkers for the early detec-
tion of or new therapeutic targets to prevent the pro-
gression of DN.
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Alpinia oxyphylla (A. oxyphylla) is regarded as a pre-
cious drug that is widely distributed in South China. Its 
fruits are used in Traditional Chinese Medicine for the 
treatment of intestinal disorders, diarrhea, abdominal 
pain, dementia, inflammatory conditions, and cancer 
[14–16]. A. oxyphylla is rich in sesquiterpenes, diterpe-
nes, flavonoids, and diarylheptanoids. Pungent diaryl-
heptanoids from A. oxyphylla show anti-inflammatory 
properties [17] and A. oxyphylla induced apoptosis and 
suppressed growth of HepG2 cells might be accom-
plished through the reactive oxygen species mediated 
signaling pathway [16]. A few studies have shown that A. 
oxyphylla can promote the migration and proliferation 
of human adipose tissue-derived stromal cells [18, 19]. 
In our previous study, we found that A. oxyphylla extract 
(AOE) exhibits antioxidant and anti-diabetes properties 
[20]; however, the molecular mechanisms underlying the 
AOE mediated anti-diabetes effects are not well under-
stood. In addition, given the importance of miRNAs 
in the development of diabetes and obesity, we investi-
gated whether miRNAs play a role in the effects of AOE 
treatment for DN. In the present study, we investigated 
miRNA expression profiles using deep sequencing in 
the kidneys of normal DB/DB mice, and in db-/db- mice 
treated or untreated with AOE.

Methods
Preparation of the plant extract
The ripe fruit of A. oxyphylla were purchased from a mar-
ket specializing in herbs (Haikou, Herb Market, China) 
in Jan of 2015. The plant was authenticated by Dr. Qiang 
Liu of the Department of Pharmacognosy, Hainan Medi-
cal College, Haikou, China. A. oxyphylla was extracted 
with 640  ml of water for 16  h at 90  °C, two times. The 
water extract was then lyophilized and stored at room 
temperature until use. The dry yield was 8% (w/w). The 
dry powder was dissolved directly by water to proper 
concentration.

Animals
In this study, we strictly obeyed the animal protocols 
approved by the Ethics Committee of Hainan Medi-
cal College for Animal Care and Use. For the care 
and use of animals utilized in this research, we moni-
tored the animals twice per week, and none of animals 
showed severe ill, died or moribund during the whole 
experiments.

A total of 24, 3–4 week-old male mice, including 8 DB/
DB mice and 16 db-/db- (the mice carry a mutation in the 
leptin receptor gene) mice on a C57BL/Ks background, 
were obtained from the Model Animal Research Center 
of Nanjing University, China. All mice were allowed to 
acclimatize for 1  week before the 8  week experimental 

period. The mice were divided into 3 groups with 8 ani-
mals in each group. DB/DB mice group and db-/db-H2O 
group were administered placebo (saline) only, db-/db-
AOE group was administered with 500  mg/kg of AOE 
via the intragastric route once a day for 8 weeks (approxi-
mately, 0.2 ml in volume).

At the end of the 8-week period, individual mice were 
placed in metabolic cages to obtain 24-h urine collec-
tions. Then, the mice were euthanized under chloral 
hydrate anesthesia, and blood and kidney samples were 
collected for analysis. Blood samples were collected from 
the hepatic portal vein into a tube for EDTA anticoagula-
tion and centrifuged (3000  rpm for 15  min at 4  °C) for 
separating the plasma. The plasma was then frozen at 
−70 °C for biochemical analysis. The kidney were excised, 
weighed and homogenized in a 3:1 v/w of 0.25 M sucrose, 
10  mM HEPES, 1  mM EDTA (pH 7.5) buffer. Samples 
were homogenized for 30 s at 6.45 m/s in an Omni Bead 
Ruptor (OMNI International IM, GA, USA). The pro-
tein concentration in each sample was determined using 
Bradford protein assay kit (TIANGEN Biotech, Beijing).

Measurement of concentration of glucose, albumin 
and creatinine
These parameters were measured using commercial kits 
(Jian Cheng Biotechnology Company, Nanjing, China), 
according to the manufacturer’s instructions.

RNA isolation
Total miRNA was extracted from mice kidney using the 
mirVana miRNA Isolation kit (Applied Biosystems, USA) 
according to the manufacturer’s instructions.

Sequencing and reads processing
For small-RNA sequencing, complementary small-RNA 
libraries were prepared by ligating different adaptors to 
the total RNA followed by reverse transcription and pol-
ymerase chain reaction (PCR) amplification. Sequencing 
was performed using the Illumina HiSeq 2000 sequencer 
(Illumina, USA) with 50-bp single-end reads according 
to the manufacturer’s standard protocol. The removal 
of poor quality sequences and trimming of adaptor 
sequences from the raw sequence data was carried out 
using cutadapt [21], trimmed sequences shorter than 
18 nt was discarded. The clean sequencing data were 
mapped to the mouse genome (release GRCm37.p1, from 
NCBI genome database) and Rfam database v11 (http://
www.sanger.ac.uk/Software/Rfm/). Reads aligned in 
the genome, excluding those matching tRNAs, rRNAs, 
snRNA, and snoRNAs, were used for further analysis. 
All known mature miRNAs and their precursors were 
retrieved from miRBase (version 21; http://www.mirbase.
org).

http://www.sanger.ac.uk/Software/Rfm/
http://www.sanger.ac.uk/Software/Rfm/
http://www.mirbase.org
http://www.mirbase.org
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miRNA identification and qualification
The remaining reads were used to predict novel miRNAs 
and do quantitative analysis through the miRDeep2 [22]. 
The frequency of microRNAs from different libraries was 
normalized by total clean reads of microRNAs in each 
sample. If the normalized read count of a given micro-
RNA is zero, the expression value was modified to 1 for 
further analysis. The pairwise t test was applied to filter 
differentially expressed microRNAs and mRNAs for the 
two groups. For each miRNA,reads number was normal-
ized. False discovery rate (FDR)—adjusted P values (P 
0.05) and an absolute fold change of 1 were set as the cut-
off values.

Hierarchical clustering
Hierarchical clustering was applied to both axes using 
the weighted pair-group method with centroid average as 
implemented in the program Cluster (Eisen; http://www.
microarrays.org/software). The distance matrixes used 
were Pearson correlation for clustering the arrays and the 
inner product of vectors normalized to magnitude 1 for 
the genes (this is a slight variant of Pearson correlation; 
see Cluster manual available at http://www.microarrays.
org/software/ for computational details). The results were 
analyzed with Tree View (Eisen; http://www.microarrays.
org/software) [23].

Validation of differentially expressed miRNAs
Quantitative real time (qRT)-PCR was performed to con-
firm the differential expression of miRNAs identified by 
sequencing. Briefly, cDNA synthesis and qRT-PCR were 
performed using TaqMan miRNA assays (Applied Bio-
systems, Foster City, CA, USA) according to the manu-
facturer’s instructions. Cycle threshold (Ct) values for 
miRNAs were normalized against U6 RNA (internal con-
trol) and the relative expression was calculated using the 
2−ΔΔCt method.

Predication of the potential target miRNAs
There is no one algorithm that outperforms the others 
in terms of sensitivity and specificity. The potential miR-
NAs target genes were identified by miRWalk, miRanda, 
Sanger miRDB, RNAhybrid, and Targetscan in the most 
commonly used prediction website (http://www.umm.
uni-heidelberg.de/apps/zmf/mirwalk/predictedMiRNAs-
gene.html) [24]. Gene function was assigned based on 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID).

Statistical analyses
The concentration of glucose, albumin and creatinine are 
presented as the mean ±  standard deviation (SD). Data 
were analyzed by the Statistical Product and Service 

Solutions (SPSS) program (Version 16) (IBM, USA). 
Comparisons of multiple groups were done with ANOVA 
with corrections for multiple comparisons. Differences of 
P < 0.05 were considered statistically significant.

Results
Changes in body weight of db-/db- mice after AOE 
administration for 8  weeks did not differ (data not 
shown). In db-/db-AOE mice, plasma glucose decreased 
significantly by 28% (P  <  0.001), plasma creatinine (Cr) 
decreased significantly by 16.7% (P  <  0.05), urine albu-
min excretion decreased by 52% (P  <  0.001), and urine 
albumin-to-creatinine levels decreased 35.9% (P < 0.001), 
comparing with db-/db-H2O group (Fig.  1). Meanwhile, 
all parameters we evaluated in db-/db-AOE group were 
higher than DB/DB group. Those results suggest that 

Fig. 1  Effects of AOE on blood glucose levels (a), plasma creatinine 
(b), urine albumin (c) and urine albumin to creatinine (d). Data repre-
sent the mean ± SD (n = 8). *P < 0.05

http://www.microarrays.org/software
http://www.microarrays.org/software
http://www.microarrays.org/software/
http://www.microarrays.org/software/
http://www.microarrays.org/software
http://www.microarrays.org/software
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/predictedMiRNAsgene.html
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/predictedMiRNAsgene.html
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/predictedMiRNAsgene.html
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AOE plays a role in both anti-diabetes and improving 
renal function.

Then, we tried to more deeply understand the molecu-
lar mechanisms of AOE therapy for DN. miRNA expres-
sion patterns in the kidneys of DB/DB and db-/db- mice 
were detected by using deep sequencing and differential 
expression analysis. We compared the known miRNAs 
expression between the two samples to determine the 
differentially expressed miRNAs. In total, 23 miRNAs 
were significantly (at least two fold) identified as differ-
entially regulated in the DB/DB vs db-/db-H2O mice (17 
miRNAs) and/or db-/db-AOE vs db-/db-H2O mice (13 
miRNAs) (Table  1). In them, 7 miRNAs (mmu-let-7k, 
mmu-miR-378d, mmu-miR-129-1-3p, mmu-miR-21a-5p, 
mmu-miR-29c-3p, mmu-miR-203-3p, and mmu-miR-
7a-5p) were identified in both comparison groups 
(Fig. 2). All 23 miRNAs were used for hierarchical clus-
tering analysis (Fig.  3). 19 miRNAs are either down- or 
up-regulated in both comparison groups. Therefore, our 
results showed diabetes mellitus changed the miRNAs 
expression pattern, which could be partially reverted by 
AOE treatment.

To validate the deep sequencing data, the miRNA 
expression was measured by qRT-PCR. 7 miRNAs (mmu-
let-7k, mmu-miR-378d, mmu-miR-129-1-3p, mmu-
miR-21a-5p, mmu-miR-29c-3p, mmu-miR-203-3p, and 
mmu-miR-7a-5p) were selected as candidate and quanti-
fied by qRT-PCR. The qRT-PCR results for miRNAs and 

Table 1  All 24 regulated miRNAs in kidney tissues: 24 miRNAs with fold change and adjusted p-values that were found 
to be differentially regulated in the diabetes mice (DB/DB vs db-/db-H2O) or diabetes mice treated with AOE (db-/db-AOE 
vs db-/db-H2O)

Italic values indicate the miRNAs was further analyzed via qRT-PCR

DB/DB versus db-/db-H2O (FC Log2) P value db-/db-AOE versus db-/db-H2O (FC Log2) P value

mmu-let-7k 2.59 0.00097 2.47 0.00008

mmu-miR-106b-3p −1.03 0.01629 −0.92 0.06316

mmu-miR-129-1-3p −1.27 0.01035 −1.15 0.00049

mmu-miR-151-5p −1.17 0.01808 −0.93 0.05481

mmu-miR-203-3p −1.13 0.01778 −1.01 0.00634

mmu-miR-20a-5p −0.81 0.08940 −1.03 0.01215

mmu-miR-21a-5p −1.54 0.00118 −1.34 0.00098

mmu-miR-223-3p −1.40 0.06575 −1.62 0.01640

mmu-miR-22-3p −0.89 0.10567 −1.14 0.00635

mmu-miR-29c-3p −1.10 0.01878 −1.01 0.00147

mmu-miR-30a-5p −1.22 0.00060 −0.96 0.05265

mmu-miR-30b-5p −1.06 0.04934 −0.91 0.06124

mmu-miR-335-5p −0.62 0.13545 −1.08 0.02466

mmu-miR-345-3p 1.03 0.01347 0.79 0.07587

mmu-miR-3473b −1.09 0.03752 0.16 0.18946

mmu-miR-34a-5p −1.02 0.04450 0.26 0.06833

mmu-miR-378d 5.25 0.00000 5.16 0.00014

mmu-miR-379-5p −0.39 0.08465 −1.01 0.01962

mmu-miR-455-5p −1.28 0.00542 0.68 0.08325

mmu-miR-676-5p −1.31 0.05468 −1.01 0.00082

mmu-miR-7a-5p −1.31 0.00964 −1.33 0.00793

mmu-miR-802-3p −1.38 0.00231 0.64 0.07654

mmu-miR-874-3p −1.60 0.00441 −1.40 0.05649

novel_mir_8 2.08 0.00431 2.25 0.00258

Fig. 2  Venn diagrams showing the overlap between DB/DB group vs 
db-/db-H2O group and db-/db-AOE group vs db-/db-H2O group
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mRNAs presented in Fig. 4 demonstrate very good cor-
respondence between the two platforms.

To better understanding the 7 identified miRNAs 
function, miRWalk was used to predict the miRNA tar-
geted genes. Based on stringent standards, 1071 putative 
miRNA-target genes were chosen; DAVID tools were 
also used to search for Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis (Table 2). The results 
showed that 6 KEGG class pathway was enriched, includ-
ing Environmental Information Processing, Genetic 
Information Processing, Human Diseases, Metabolism, 
Organismal Systems and Environmental Information 
Processing. Those results suggest AOE might affect dia-
betes development through miRNAs target genes and 
related signaling pathway.

Discussion
Diabetic kidney disease is the leading cause of end-stage 
renal disease. Albuminuria is recognized as the most 
important prognostic factor for CKD progression [4]. 
In the present study, we observed that AOE treatment 
reduced blood glucose levels and urine albumin secre-
tion, while plasma creatinine level and urine albumin to 
creatinine level was also reduced. Those results suggest 
that AOE treatment plays a protective role by adjusting 
renal function.

Kidney abnormalities are associated with aberrant 
miRNA expression patterns. We assessed the status of 
miRNA expression by deep sequencing. For small RNA 
filtration and miRNA annotation, The 49nt sequence 
tags from Hiseq sequencing gone through the data clean-
ing analysis to get credible clean tags. A total of 1.18*107 
reads were sequenced from the mice small RNA library. 
Total 10,391,183 (88.93%) clean reads remained after 
removing ambiguous reads (Additional file 1). After reads 
assembly, removing the redundancy and annotation of 
unique sequences, a total of 276,231 Unique sRNAs were 
obtained, and of them, about 19.45% are the potential 
miRNA reads with 21–24 bp in length (Additional file 2).

In the kidneys, total 17 miRNAs were statistically 
identified while db-/db-H2O compared with DB/DB. 
In a recent study, several miRNAs were identified from 
the renal of db-/db- [11]; however, we did not find any 
overlap with the miRNAs that were altered in the pre-
vious studies when compared with those that we report 
here. This is presumably because miRNAs exhibit tissue-
specific expression patterns. In them, 9 miRNAs (miR-
21a, miR-29c, miR-30a, miR-30b, miR-34a, miR-106b, 
miR-203, miR-378 and miR-802) had been shown to 
be related with diabetes or glucose metabolism. In dia-
betic patients, miR-21a is down-regulated in peripheral 
blood mononuclear cells [25], serum miR-30a and urine 
miR-30b expression is up-regulated [26, 27]. miR-29c is 
related with renal interstitial fibrosis in humans and rats 
[28]. Inhibition of miR-29c significantly reduces albumi-
nuria and kidney mesangial matrix accumulation in the 
db-/db- mice [29]. Down-regulation of miR-34a alle-
viates mesangial proliferation in  vitro and glomerular 
hypertrophy in early DN mice [30]. miR-106b is highly 
expressed in nephron progenitors and negatively regu-
lates insulin sensitivity [31, 32]. miR-203 is modified in 
diabetic mice, and might responds to hepatic insulin 
resistance [33, 34]. Overexpression of miR-802 impairs 
glucose metabolism [35] miR-378 is regulated by glu-
cose concentration, while high level of miR-378 could 
attenuates high glucose-suppressed osteogenic differ-
entiation in  vitro and diabetic mice model [36]. Those 
miRNAs are related with renal proliferation, interstitial 
fibrosis, mesangial matrix accumulation or insulin sen-
sitivity, which confirm that we obtain some important 
miRNAs in DN mice model. Moreover, there is also 
the first demonstrated elevated levels of miR-874-3p, 
miR-7a-5p, miR-455-5p, miR-129-1-3p, miR-151-5p, 
miR-3473b, and down regulated levels of miR-345-3p, 
novel_mir_8 and let-7 k in the kidneys of db-/db- mice. 
Our study of the db-/db- mice kidney is a beneficial 
complement to the current knowledge of the effects of 
the miRNA expression profile on kidney metabolism 
during diabetes.

Fig. 3  Hierarchical clustering of kidney tissues from DB/DB mice 
and db-/db- mice treated and untreated with AOE. Kidney tissue 
was clustered according to the expression profiles of 23 differentially 
expressed miRNAs between db-/db- and DB/DB groups and db-/
db- mice treated and untreated with AOE. The analyzed samples 
are reported in columns and the miRNAs are presented in rows. The 
miRNA dendrogram is shown on the left, and the sample dendro-
gram appears at the top. The color scale shown at the top indicates 
the relative expression level of miRNAs, with red representing a high 
expression level and blue representing a low expression level
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Then, we assume that AOE treatment might change 
the miRNAs expression pattern in db-/db- mice kidney. 
Fortunately, we found 13 differential expression miRNAs. 
In them, 7 miRNAs (miR-378d, miR-29c-3p, miR-20a-5p, 
miR-335-5p, miR-22-3p, miR-21a-5p and miR-223-3p) 
had been shown to be related with diabetes or glucose 
metabolism. In diabetic patients, miR-20a-5p is high 
expressed [37]. It is reported that miR-22 is involved in 
renal fibrosis and glucose metabolism [38, 39]. miR-223 
and miR-335 are specifically regulated by hyperglycemia, 
and are crucial regulator of inflammatory response and 

systemic insulin resistance [40–42]. In total, we found 
out 23 miRNAs was significantly altered in the DB/DB 
vs db-/db-H2O mice (17 miRNAs) and/or db-/db-AOE 
vs db-/db-H2O mice (13 miRNAs). The alteration of 19 
miRNAs showed the similar tendency. We also found 
the 4 miRNAs expression is oppositely regulated, but 
the p value suggests it is non-significantly difference. 
Interestingly, 7 miRNAs (let-7k, miR-378d, miR-129-
1-3p, miR-21a-5p, miR-29c-3p, miR-203-3p, and miR-
7a-5p) expression was significantly restored after AOE 
treatment. In them, 4 miRNAs (miR-378d, miR-21a-5p, 

Fig. 4  Quantitative real-time polymerase chain reaction (qRT-PCR) validation of the identified miRNAs. The expression of a miR-let-7k, b miR-129-
1-3p, c miR-378d, d miR-21a-5p, e miR-29c-3p, f miR-203-3p, g miR-7a-5p in DB/DB groups (white column), db-/db-H2O (gray column) and db-/
db-AOE (black column) detected by QRT-PCR consist with sequencing. Data represent the mean ± SE, The experiment repeated three times
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miR-29c-3p and miR-203-3p) had been shown to be 
related with renal interstitial fibrosis or glucose metabo-
lism. Thus, we deduced that those 7 miRNAs might act a 
more authentic role in AOE anti-diabetic therapy.

Furthermore, the target genes regulated by the 7 miR-
NAs identified were subjected to KEGG pathway enrich-
ment. Our study showed that T2DM; renal cell carcinoma; 
AMPK signaling pathway; PI3K-Akt signaling pathway; 
glycosphingolipid biosynthesis; and the Jak-STAT signal-
ing pathway are affected. It is reported that the PI3K-Akt 
signaling pathway plays a role in insulin-mediated glucose 
uptake in both muscle and adipose tissue cells while inhib-
iting glucose release from hepatocytes [43]. AMPK signal-
ing pathway plays an important role in glucose metabolism 
[44]. Glycosphingolipid synthesis is involved in insulin 
sensitivity and glucose homeostasis [45]. High levels of gly-
cosphingolipids contribute to cell fibrosis, and causing early 
diabetic kidney disease [46]. Activation of the JAK/STAT 
signaling pathway can stimulate unwarranted proliferation 
and growth of glomerular mesangial cells, resulting in DN 

[47]. Overall, our KEGG analysis results reveal miRNAs 
related to DN development and AOE treatment mecha-
nism. Further study will focus on experimental validation 
of miRNAs of interest and their target genes and pathways.

Conclusions
We identified 17 different expressions of miRNAs in DB/
DB mice vs db-/db- mice and 13 different expressions of 
miRNAs in db-/db- mice treated vs untreated with AOE. 
Most of miRNAs that relate to renal failure or T2DM 
had already been reported. 2 miRNAs were inhibited in 
db-/db- mice and restored by AOE treatment, while 5 
miRNAs were enhanced in db-/db- mice and impaired 
by AOE treatment. The 7 identified miRNAs might be 
involved in several pathways, including T2DM, renal cell 
carcinoma, AMPK signaling pathway, and PI3K-Akt sign-
aling pathway; however, the detailed function associated 
with these miRNAs in AOE therapy needs further inves-
tigation and the target genes of miRNAs need further 
validation through additional studies.

Table 2  Biologic pathways enriched by differentially expressed microRNAs

KEGG class KEGG description Odds ratio P value Genes Num

Environmental information processing AMPK signaling pathway 2.22 0.008184 14

Jak-STAT signaling pathway 2.12 0.009269 15

FoxO signaling pathway 2.09 0.01286 14

Cell adhesion molecules (CAMs) 2.02 0.013299 15

ErbB signaling pathway 2.35 0.016766 10

Cytokine-cytokine receptor interaction 1.63 0.03407 20

PI3K-Akt signaling pathway 1.52 0.036417 26

ECM-receptor interaction 2.02 0.046688 9

Genetic information processing Fanconi anemia pathway 2.53 0.042796 6

Human diseases Choline metabolism in cancer 2.41 0.007808 12

Pancreatic cancer 2.82 0.008459 9

Renal cell carcinoma 2.82 0.008459 9

Glioma 2.50 0.0227 8

Non-small cell lung cancer 2.59 0.027265 7

Measles 1.84 0.042725 12

Type II diabetes mellitus 2.53 0.042796 6

Proteoglycans in cancer 1.65 0.042942 17

Metabolism Valine, leucine and isoleucine degradation 3.10 0.007801 8

Lysine degradation 2.83 0.01867 7

beta-Alanine metabolism 3.41 0.023687 5

Glycosphingolipid biosynthesis—lacto and neolacto series 3.37 0.0429 4

Glycosphingolipid biosynthesis—globo series 4.41 0.043669 3

Organismal systems Fc epsilon RI signaling pathway 2.67 0.011246 9

Osteoclast differentiation 1.95 0.031094 12

Neurotrophin signaling pathway 1.95 0.031094 12

Cholinergic synapse 2.00 0.032356 11
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