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Abstract 

Background:  This study aimed to investigate the gene expression changes associated with carcinoma-associated 
fibroblasts (CAFs) involving in non-small cell lung carcinoma (NSCLC).

Methods:  We downloaded the GEO series GSE22862, which contained matched gene expression values for 15 CAF 
and normal fibroblasts samples, and series GSE27289 containing SNP genotyping for four matched NSCLC samples. 
The differentially expressed genes in CAF samples were identified using the limma package in R. Then we performed 
gene ontology (GO) and pathway enrichment analysis and protein–protein interaction (PPI) network construction 
using the identified DEGs. Moreover, aberrant cell fraction, ploidy, allele-specific copy number, and loss of heterozygo-
sity (LOH) within CAF cells were analyzed using the allele-specific copy number analysis.

Results:  We obtained 545 differentially expressed genes between CAF and normal fibroblasts samples. The up-
regulated genes are mainly involved in GO terms such as positive regulation of cell migration and extracellular region, 
while the down-regulated genes participate in the lung development and extracellular region. Multiple genes includ-
ing bone morphogenetic protein 4 (BMP4) and transforming growth factor, beta 3 (TGFB3) are involved in the TGF-β 
signaling pathway. Genes including BMP4, TGFBI and matrix Gla protein (MGP) were hub genes. Moreover, no LOH 
event for BMP4 and MGP was found, that for sphingosine kinase 1 (SPHK1) was 70%, and for TGFBI was 40%.

Conclusion:  Our data suggested that BMP4, MGP, TGFBI, and SPHK1 may be important in CAFs-associated NSCLC, and 
the abnormal expression and high LOH frequency of them may be used as the diagnosis targets of CAFs in NSCLC.

Keywords:  Carcinoma-associated fibroblast, Non-small cell lung carcinoma, Differentially expressed genes, Allele-
specific copy number, Functional analysis
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Background
Lung cancer is one of the most common leading cause 
of cancer deaths worldwide [1]. Statistics show that the 
non-small cell lung carcinoma (NSCLC) accounts for 
about 85% of all lung cancers in the world [2]. Treatment 
methods such as surgery, drug therapy and chemotherapy 
have played certain roles in curing NSCLC [2]. However, 
in [3] and [4], the authors suggest that 5-year survival 
rate is poor due to the difficulties in the early diagnose of 

NSCLC and the easy invasion and metastasis of NSCLC 
cells. Therefore, exploring the mechanism in NSCLC 
metastasis and invasion will be of great significance to 
provide basis for NSCLC diagnosis and treatment.

In [5], authors suggest that carcinoma-associated 
fibroblasts (CAFs) are the most important compo-
nent of developing cancers. Recent studies implied that 
CAFs played important roles in cancers biology occur-
ring in epithelia, such as neoplastic progression, tumor 
growth, invasion and metastasis [6–8]. CAFs constitute 
a major portion of the reactive tumor stroma and are 
related to the cell invasion and metastasis in NSCLC dur-
ing malignancy [9]. Also, Neta et  al. [10] referred that 
CAFs activities promoted the macrophage recruitment, 
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neovascularization, and tumor growth in incipient neo-
plasia to orchestrate tumor inflammation via the NF-kB 
signaling pathway. Furthermore, an increasing number 
of evidences show that mutations of genes for CAFs are 
crucial for cancer metastasis and growth. For examples, 
some changes in DNA copy number of cluster CAFs may 
contribute to the metastasis for breast cancer cells [11]. 
In spite of many researches devoted to the exploration of 
the role of CAFs in NSCLC, the mechanism of CAFs in 
NSCLC still remains not fully understood.

Using the GEO (Gene Expression Omnibus) series 
GSE22862, Horie et al. [12] proved that RNAi-mediated 
targeting of transforming growth factor, beta 1 (TGFB1) 
ligands were beneficial for lung cancer treatment through 
its action on cancer and stromal cells. In this study, we 
screened the differentially expressed genes (DEGs) in 
NSCLC samples compared with the normal samples 
using the same GEO series GSE22862 [13]. Bioinfor-
matics methods were used to analyze the functions and 
pathways of the DEGs, as well as the allele-specific copy 
number (ASCN) of them to predict hub genes which 
were related with the CAFs in NSCLC. This study aimed 
to explore the underlying genes associated with patho-
mechanism of CAFs in NSCLC, which may help to search 
for diagnosis and treatment targets for this disease.

Methods
Microarray data
We downloaded the GEO series GSE22874 [13] from 
the GEO database in NCBI (http://www.ncbi.nlm.nih.
gov/geo/). This series contains four subseries and two 
of them (GSE22862 and GSE27289) were analyzed in 
this study. The single nucleotide polymorphism (SNP) 
series GSE27289 is generated from four paired primary 
NSCLC CAF and normal fibroblasts (NF) samples based 
on the platform of GPL13135 HumanOmniExpress Bead-
Chip. GSE22862 is a CAF series, which originates from 
matched gene expression values from 15 CAF and NF 
samples of resected NSCLC tissues based on the plat-
form of GPL5175 Affymetrix Human Exon 1.0 ST Array 
(Affymetrix Inc., Santa Clara, California, USA). At pre-
sent, we chose four matched samples (4 CAF samples 
and 4 NF samples) of two stages I squamous cell carcino-
mas and 2 stage II adenocarcinoma from the 30 samples 
of GSE28682.

Microarray data preprocessing and conversion
The CEL file data of GSE22862 download from the 
GEO database have been normalized using the Robust 
Multi-array Analysis method [14] in affy (http://www.
bioconductor.org/packages/release/bioc/html/affy.html) 
package in Bioconductor. When multiple probes corre-
spond to the same gene, the mean expression value was 

calculated and considered as the expression value of this 
gene. Meanwhile, the CEL file data of GSE27289 that 
have been preprocessed using the GenomeStudio [15], 
were extracted for the SNP symbols, chromosome num-
ber, chromosome location, B allele frequency and Log R 
values both in CAF samples and in NF samples.

Screening and functional enrichment analysis of DEGs
We screened the DEGs between CAF and NF samples in 
GSE22862 series using the limma package in R (http://
www.bioconductor.org). The p value <0.05 and |log2 (fold 
change)| ≥0.58 (fold change ≥1.5 or ≤0.67) were chosen 
as the thresholds. In the present study, we did not per-
formed multiple test correction for the p values, because 
the corrected p values were too low to select enough sig-
nificant genes.

In addition, we conducted gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways enrichment analyses for the DEGs using the 
Database for Annotation Visualization and Integrated 
Discovery (DAVID, http://david.abcc.ncifcrf.gov/) [16] 
online tool. p value <0.05 was chosen as threshold.

Protein–protein interaction (PPI) network construction 
of DEGs
PPI analysis can provide new insights into protein func-
tion, besides, it may help to uncover the generic organi-
zation principles of functional cellular networks [17], 
therefore, we would construct PPI network to further 
analyze the DEGs. Search Tool for the Retrieval of Inter-
acting Genes/Proteins (STRING, http://string.embl.
de/) [18] that provided functional associations between 
proteins was used to predict the interaction pairs of the 
selected DEGs. In this study, we only mapped the DEGs 
into STRING database to predict the PPI pairs because 
we intended to investigate the interactions between 
DEGs. Cytoscape (http://www.cytoscape.org/) [19] that 
was widely used to integrate biomolecular interaction 
networks into models was used to construct the PPI 
network of the DEGs. Most of previous obtained bio-
logical networks were found to obey the scale-free attri-
bution [20]. Thus, we analyzed the connectivity degree 
of nodes in the PPI network by topological analysis to 
obtain the important nodes with higher degrees (hub 
proteins) [21]. Genome-wide studies have shown that 
deletion of a hub protein is more likely to be lethal 
than deletion of a non-hub protein, thus, we think that 
the hub nodes may play important roles in the CAF of 
NSCLC.

ASCN analysis
ASCN analysis of tumor [22, 23] is a method that can 
be used to analyze the aberrant cell fraction, ploidy, 
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ASCN, and loss of heterozygosity (LOH) of tumor 
cells. The ASCN for one gene was calculated based on 
the Log R and B allele frequency values of allele B. In 
this study, we used ASCN method to determine the 
values of the aberrant cell fraction, ploidy, ASCN and 
LOH of the selected genes. Twenty-two autosomes 
plus two gender associated chromosomes were chosen 
as parameters of the number of the chromosomes.

Candidate gene identification
On account of GO and KEGG pathway enrichment 
results, as well as PPI network of the DEGs, we identified 
the potential critical genes combining with the results of 
ASCN analysis. Additionally, based on the databases of 
tumor suppressor (TS) gene [9] and tumor-associated 
gene (TAG) [10], we identified the DEGs that function as 
transcription factors, tumor suppressors or oncogenes. 
Finally, the ASCN values of these identified genes were 
analyzed.

Results
Identified DEGs
With p value <0.05 and |log2 (fold change)| ≥0.58, we iden-
tified 545 DEGs including 66 up-regulated and 479 down-
regulated DEGs in CAF samples compared with NF samples 
in GSE22862. The number of down-regulated DEGs was 
far more than that of up-regulated DEGs, suggesting the 
important roles of down-regulated genes in NSCLC.

Functional enrichment analysis of DEGs
The GO functions and pathways of up- and down-reg-
ulated DEGs in CAF samples were shown in Tables  1, 
2, respectively. Up-regulated genes are significantly 
involved in GO terms such as cell surface receptor linked 
signal transduction, G-protein couple receptor protein, 
positive regulation of cell migration and extracellular 
region, while down-regulated genes are associated with 
GO terms including lung development, respiratory tube 
development and extracellular region (Table 1).

Table 1  The enriched gene ontology terms and pathways of the differentially expressed genes (DEGs) in carcinoma-asso-
ciated fibroblasts (CAF) of non-small cell lung carcinoma (NSCLC)

BP biological process, CC cellular component, MF molecular function, Count number of genes

Category Term Count p value

Up-regulated genes

 BP GO:0007166~cell surface receptor linked signal transduction 16 4.95E−04

GO:0007186~G-protein coupled receptor protein signaling pathway 12 7.29E−04

GO:0008544~epidermis development 5 0.0029

GO:0030335~positive regulation of cell migration 4 0.0030

GO:0007398~ectoderm development 5 0.0039

GO:0040017~positive regulation of locomotion 4 0.0039

GO:0051272~positive regulation of cell motion 4 0.0039

 CC GO:0005576~extracellular region 13 0.0249

GO:0005886~plasma membrane 19 0.0456

 MF GO:0005179~hormone activity 3 0.0496

Down-regulated genes

 BP GO:0007416~synaptogenesis 9 1.31E−06

GO:0016339~calcium-dependent cell–cell adhesion 8 1.43E−06

GO:0043062~extracellular structure organization 16 2.72E−05

GO:0016485~protein processing 12 1.80E−04

GO:0050808~synapse organization 9 1.89E−04

GO:0030324~lung development 11 2.80E−04

GO:0030323~respiratory tube development 11 3.57E−04

 CC GO:0005576~extracellular region 87 2.38E−06

GO:0044421~extracellular region part 45 2.47E−04

GO:0005624~membrane fraction 38 8.21E−04

 MF GO:0005509~calcium ion binding 47 2.44E−05

GO:0015923~mannosidase activity 4 0.0067

GO:0019838~growth factor binding 9 0.0070
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In addition, only pathway of Olfactory transduction is 
enriched by up-regulated genes, such as olfactory recep-
tor, family 6, subfamily B, member 1 (OR6B1), olfactory 
receptor, family 5, subfamily L, member 2 (OR5L2) and 
olfactory receptor, family 10, subfamily H, member 1 
(OR10H1). The down-regulated genes, such as bone mor-
phogenetic protein 4 (BMP4), TGFB3 and SMAD family 
member 3 (SMAD3), are mainly involved in TGF-β sign-
aling pathway (Table 2).

PPI network construction
The PPI network of DEGs was constructed and shown 
in Fig. 1. The PPI network contained 266 nodes and 409 
interaction pairs. Among the top ten high degree genes, 
only two were up-regulated, including toll-like receptor 
4 (TLR4, degree  =  12) and chemokine (C-X-C Motif ) 
ligand 10 (CXCL10, degree = 11). The other eight down-
regulated genes including transforming growth factor, 
beta-induced (TGFBI, degree =  19), neurotensin (NTS, 

Table 2  The enriched pathways of  the differentially expressed genes (DEGs) in  carcinoma-associated fibroblasts (CAF) 
of non-small cell lung carcinoma (NSCLC)

Count number of genes

DEGs KEGG pathway Count p value

Up-regulated gene hsa04740:olfactory transduction 5 0.0269

Down-regulated gene hsa04610:complement and coagulation cascades 9 7.57E−04

hsa05410:hypertrophic cardiomyopathy (HCM) 8 0.0120

hsa00640:propanoate metabolism 5 0.0128

hsa05414:dilated cardiomyopathy 8 0.0165

hsa05412:arrhythmogenic right ventricular cardiomyopathy (ARVC) 7 0.0219

hsa00380:tryptophan metabolism 5 0.0274

hsa04350:TGF-beta signaling pathway 7 0.0392

hsa00340:histidine metabolism 4 0.0499

Fig. 1  Protein–protein interaction network of the selected differentially expressed genes (DEGs). Red circle stands for the up-regulated genes 
while green circle stands for the down-regulated genes. Gray circle stands for the non-differentially expressed genes. Edge stands for the interaction 
between two genes
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degree =  15), matrix Gla Protein (MGP, degree =  13), 
guanine nucleotide binding protein (G Protein), gamma 
2 (GNG2, degree  =  13), collagen, type III, alpha 1 
(COL3A1, degree  =  13), BMP4 (degree  =  12), per-
oxisome proliferator-activated receptor (PPARG, 
degree = 12), and collagen, type XIV, alpha 1 (COL14A1, 
degree = 11).

Analysis of copy number of alleles
The aberrant cell fraction and ploidy of genes of tumor 
cells in CAF samples were respectively 77% and 2.002 
based on the ASCNT analysis. In addition, based on 
the functional enrichment analysis and PPI network, we 
obtained 16 critical genes. ASCN results of the 16 critical 
genes were shown in Table 3. The copy number of alleles 
of most genes were abnormal except for MGP, BMP4, 
PPARG and TLR4, moreover, they were all positive for 
LOH. For instance, the LOH proportion of TGFB3 and 
sphingosine kinase 1 (SPHK1) was 70%, while that of 
MGP was 0% (Table 3).

Identified candidate genes
The result of function annotation for DEGs in CAF sam-
ples was shown in Table 4. The results displayed that six 
up-regulated genes and ten down-regulated genes func-
tion as transcription factors. In addition, SPHK1 and 
pre-B-cell leukemia homeobox 1 (PBX1), etc. were onco-
genes, while runt-related transcription factor 3 (RUNX3) 
and TGFBI, etc. were tumor suppressor genes (Table 4).

The result of ASCN analysis of genes mentioned 
above was shown in Table  5. As shown in Table  5, 
LOH of latexin (LXN), RAS-like, family 11, mem-
ber A (RASL11A) and potassium channel regulator 
(KCNRG) were all 100%, LOH of transcription factor 
ap-2 gamma (TFAP2C) and SPHK1 was 70%, of tumor 
protein P53 inducible nuclear protein 1 (TP53INP1) was 
60%, and of homeobox D12 (HOXD12), ERBB recep-
tor feedback inhibitor 1 (ERRFI1), ribosomal protein S6 
kinase, 90 kDa, polypeptide 6 (RPS6KA6), DnaJ (Hsp40) 
homolog, subfamily B, member 4 (DNAJB4) and integrin, 
alpha 7 (ITGA7) was 50%. Moreover, the copy numbers 
of allele for these genes were not the same (Table 5).

Discussion
In this study, we screened a total of 66 up-regulated and 
479 down-regulated DEGs by comparing gene expres-
sion between CAFs tissues and NF tissues in NSCLC. 
DEGs including BMP4, TGFB3 and MGP involving in the 
TGF-β signaling pathway were found to be hub genes in 
the PPI network. Moreover, no LOH was found in both 
BMP4 and MGP. Besides, LOH of the tumor oncogene 
SPHK1 was 70%, and of tumor suppressor gene TGFBI 
was 40%.

BMP4 is a member of the bone morphogenetic pro-
tein family which belongs to the transforming growth 
factor (TGF-β) superfamily [24], while no LOH events 
were found about it. In addition, it was found that BMP4 
was a hub gene in the PPI network and involved in lung 

Table 3  Copy numbers of  allele and  loss of  heterozygosity (LOH) for  the genes using the allele-specific copy number 
(ASCN) analysis

Gene symbol the name of one gene, proportion the percentage of copy number of A allele minus copy number of B allele, Description the frequency of LOH, FC fold 
change

Gene symbol The copy number of A allele The copy number of B allele Proportion (%) Description Log2 FC

TGFB3 1.7 0.3 70 Copy neutral LOH in 70% −0.96

SPHK1 0.3 1.7 70 Copy neutral LOH in 70% 0.6825

NTS 0.5 1.5 50 Copy neutral LOH in 50% −0.7975

CXCL10 1.5 0.5 50 Copy neutral LOH in 50% 0.66

F2RL1 0.5 1.5 50 Copy neutral LOH in 50% −1.375

TGFBI 0.6 1.4 40 Loss of one allele in 40% −1.23

COL3A1 1.4 0.6 40 Loss of one allele in 50% −1.12

LUM 1.2 0.8 20 Loss of one allele in 20% −0.665

IGF2 0.8 1.2 20 Loss of one allele in 20% 1.07125

GNG2 0.9 1.1 10 Imbalance in 10% −1.3775

COL14A1 1.1 0.9 10 Imbalance in 10% −1.8125

WNT2 1.1 1 5 Imbalance in 5% −1.1275

MGP 1 1 0 Expected balance −2.3075

BMP4 1 1 0 Expected balance −1.115

PPARG 1 1 0 Expected balance −1.1

TLR4 1 1 0 Expected balance 1.09
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development and the TGF-β signaling pathway. Meiou 
et al. [25] reported that the TGF-β factor signaling which 
was regulated by the transcriptional co-activator p/CAF 
(a histone acetyltransferase), played key roles in breast 
cancer cell migration and invasion. In previous studies, 
BMP4 was found play important roles in developmen-
tal and many cellular processes including invasion and 
migration of various cancer cells [26, 27]. Since BMP2 
is closely associated with NSCLC metastasis [28], BMP4 
may be a contributor to affect the behavior and function 
of CAFs in NSCLC via TGF-β signaling pathway. Mean-
while, TGFB3 as another member of the TGF-β family is 
also enriched in lung development and TGF-β signaling 
pathway. It was detected with a high frequency of LOH 
(70%). Some studies indicated the abnormal expres-
sion of TGFB3 in NSCLC [29, 30]. Therefore, abnormal 
expression of BMP4 and TGFB3, as well the high LOH 
frequency of TGFB3 may be used as biological indicators 
for malignant CAFs in NSCLC.

Our data also showed that tumor suppressor TGFBI 
was a hub protein in the PPI network and LOH value of 
it was 40%. TGFBI has been reported to suppress tumor 

cell growth in NSCLC [31] and other types of human 
lung cancers [32]. Therefore, TGFBI may be a tumor sup-
pressor for NSCLC. Besides, Muraoka et al. [33] proved 
that blocking TGFBI expression enhanced inhibition of 
tumor cell migration and metastasis. Also, Levy et  al. 
[34] proved that LOH of TGFBI located on chromosome 
19q13.1 contributed to the metastasis of breast cancer 
cells. Thus, LOH may lead to the down-regulation of 
TGFBI in this study. On the other hand, Fong et al. [35] 
said that TGFBI promoted the migration of lung cancer 
cells. CAFs are important for breast cancer cell migration 
and metastasis [36]. Based on the previous evidences, we 
speculated that TGFBI may be a tumor suppressor for 
NSCLC and may be responsible for the CAFs migration 
in NSCLC.

SPHK1 catalyzes the phosphorylation of sphingosine 
to form sphingosine-1-phosphate (S1P), a lipid media-
tor with both intra- and extracellular functions [37]. 
Presneau and his colleagues proved that the LOH of 
SPHK1 assigned to chromosome region at 17q25.1-
q25.2, suggesting its key role in regulating early events 
during the development of sensory ganglia in ovarian 

Table 4  The allele-specific copy number (ASCN) of the 11 genes with high loss of heterozygosity (LOH) frequency

Gene symbol the name of one gene, proportion the percentage of copy number of A allele minus copy number of B allele, Description the frequency of LOH, FC fold 
change

Gene symbol The copy number 
of A allele

The copy number of B 
allele

Proportion (%) Description Log2 FC

LXN 2 0 100 Loss of the one allele,gain of another allele −1.9225

RASL11A 2 0 100 Loss of the one allele,gain of another allele −0.885

KCNRG 0 2 100 Loss of the one allele,gain of another allele −0.6275

TFAP2C 0.3 1.7 70 Copy neutral LOH in 70% 0.9875

SPHK1 0.3 1.7 70 Copy neutral LOH in 70% 0.6825

TP53INP1 1.6 0.4 60 Copy neutral LOH in 60% −0.795

HOXD12 1.5 0.5 50 Copy neutral LOH in 50% 0.87

ERRFI1 1.5 0.5 50 Copy neutral LOH in 50% −1.195

RPS6KA6 0.6 1.6 50 Loss of one allele in 50% −1.12

DNAJB4 0.4 1.4 50 Copy neutral LOH in 50% −1.02

ITGA7 0.5 1.5 50 Copy neutral LOH in 50% −0.925

Table 5  Function annotation of differentially expressed genes (DEGs) in carcinoma-associated fibroblasts (CAF)

TF transcription factor, TSG tumor suppressor gene

TF genes Oncogenes TSG

Up-regualted RUNX3, MEOX2, FOXE1, HOXD12, TFAP2C, ID1 SPHK1 RUNX3

Down-regulated TBX4, RORB, PPARG, KLF4, IFI16, PBX1, SOX5, 
NFIA, SMAD3, FOXP2

TEC, MLF1, PBX1, BANF, MLLT3,CDON LXN, DPP4, CLU, RARRES1, TGFBI, IGFBP5, 
ERRFI1, CADM1, JUP, DIRAS3, TXNIP, 
RARRES3, RPS6KA6, DNAJB4, WNT5A, 
SFRP1, ITGA7, DAPK1, RASL11A, EPB41, 
TP53INP1, SCARA3, HBP1, LIMD1, FBXO32, 
SMAD3, RNASET2, KCNRG, SEMA3B, 
NRCAM
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cancer [38]. Thus, the higher LOH value may be related 
to the abnormal expression of SPHK1 in NSCLC samples. 
Therefore, the positive result of SPHK1 at LOH analysis 
was consistent with the up-regulation of it. In addition, 
GO analysis showed that SPHK1 enriched in multiple 
cancer-related processes including positive regulation of 
cell migration. Chen et  al. [39] reported that the tumor 
oncogene SPHK1 which was up-regulated was responsi-
ble for tumor cell migration in hepatocellular carcinoma. 
Moreover, SPHK1 was found to enhance the NSCLC cell 
apoptosis via activating PI3K/Akt pathway [40]. Besides, 
it can induce breast cancer cell migration [41]. Therefore, 
we speculated that over-expressed SPHK1 may be associ-
ated with CAFs migration in NSCLC.

Interestingly, some of our results were in accordance 
with the original publication by Navab et  al. [13]. In 
their study, microarray gene-expression analysis of the 
15 matched CAF and NF cell lines identifies 46 differen-
tially expressed genes which are significantly enriched for 
extracellular proteins regulated by the TGF-β signaling 
pathway. Our study also found that BMP4 and TGFB3 
are involved in TGF-β signaling pathway, suggesting 
the important role of this pathway in CAF-associated 
NSCLC. Additionally, their study revealed prominent 
involvement of the focal adhesion and MAPK signaling 
pathways, which was not identified in our study. This dif-
ference may be due to different sample size and different 
screening threshold for DEGs.

In conclusion, genes such as BMP4, TGFB3, TGFBI, 
and SPHK1 may play important roles in CAFs of NSCLC. 
BMP4 and TGFB3 may be contributor to make effects on 
CAFs in NSCLC via TGF-β signaling pathway. SPHK1 
promoted while TGFBI inhibited the NSCLC progres-
sion, and both of them may be associated with CAFs 
migration in NSCLC. In addition, high frequency of 
TGFB3, TGFBI and SPHK1 may be useful for distin-
guishing the normal fibroblasts from malignant CAFs in 
NSCLC. However, further experimental studies are still 
needed to confirm our results.
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