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Abstract 

Background:  New sequencing technologies have opened the way to the discovery and the characterization of 
pathogenic viruses in clinical samples. However, the use of these new methods can require an amplification of viral 
RNA prior to the sequencing. Among all the available methods, the procedure based on the use of Phi29 polymerase 
produces a huge amount of amplified DNA. However, its major disadvantage is to generate a large number of chi‑
meric sequences which can affect the assembly step. The pre-process method proposed in this study strongly limits 
the negative impact of chimeric reads in order to obtain the full-length of viral genomes.

Findings:  Three different assembly softwares (ABySS, Ray and SPAdes) were tested for their ability to correctly assem‑
ble the full-length of viral genomes. Although in all cases, our pre-processed method improved genome assembly, 
only its combination with the use of SPAdes allowed us to obtain the full-length of the viral genomes tested in one 
contig.

Conclusions:  The proposed pipeline is able to overcome drawbacks due to the generation of chimeric reads during 
the amplification of viral RNA which considerably improves the assembling of full-length viral genomes.

Keywords:  RNA viral genome, Next generation sequencing, SPAdes, Assembling genome, Amplification with phi29 
polymerase
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Background
Recent improvements in sequencing technologies, 
referred to as “next-generation” sequencing (NGS), have 
opened the way in the investigation of infectious etiolo-
gies associated to various clinical samples. Indeed, for 
a decade, this approach has allowed the discovery of 
unknown and potentially pathogenic viruses in a large 
set of human samples [1] and it tends to disprove the link 
between the presence of an unknown infectious agent 
to some types of cancers [2, 3]. Irrespective of the appli-
cation, the most crucial and important step regarding 

our capacity to extract relevant information from NGS 
sequence data is bioinformatics analysis.

Indeed, after quality control and pre-processing of raw 
reads, one of the final goals of analysis for some projects 
concerning pathogen discovery or the detection of spe-
cific target organisms, is to generate contigs as large as 
possible and to assign each sequence present in the sam-
ple to a taxon [4]. In several studies, a de novo assembly 
was directly performed after read trimming followed by 
an alignment of the contigs using BLAST in order to iden-
tify the genotypes present [1–3]. Taxonomic classification 
based on BLAST, or similar tools such as USEARCH, is 
common and less time consuming when larger contigs are 
implied rather than multiple small contigs or singletons. 
That is why an assembly step is often performed prior to 
the classification and taxonomic assignation even if this 
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step is not systematically required according to the tool 
used for viral and bacterial assignation [5].

From a bioinformatics perspective, the step to correctly 
assemble the reads stemming from the raw data is cru-
cial. In theory, deep sequencing should produce sufficient 
amounts of data to allow the assembly of large contigu-
ous chunks of genomic DNA, potentially entire viral 
genomes. However, in practice, it is rarely the case. The 
assembly of viral data is a difficult task due to several dif-
ferent factors such as a high variability in the coverage or 
the presence of chimeric reads. Their presence in the raw 
data could be due to amplification during sample prepa-
ration, in particular for RNA viral genomes. Indeed, an 
amplification of viral RNA using a method based on the 
Phi29 enzyme produces a huge amount of chimeric reads 
during the random ligation of all cDNA generated by a 
random retrotranscription [6]. It is therefore not surpris-
ing that these classical tools perform poorly when dealing 
with RNA viral genomes which were amplified randomly. 
Here, we present a pre-processing procedure improving 
the assembly of reads by limiting the impact of chimeric 
reads data generated from viral RNA amplified with 
Phi29 polymerase.

Methods
Virus isolation, extraction of RNA, random amplification 
and high‑throughput sequencing
A strain of the Middelburg virus (MIDV-ArTB-5290) 
and of a Mengovirus (AnrB-3741), isolated during 
arthropod surveillance in the Central African Republic 
in 1984 from Amblyomma variegatum and in 1983 from 
Tatera sp, a species belonging to rodents (Gerbilinae), 
respectively, were amplified by serial passage in the brain 
of new-born mice. After several passages, the brains 
were homogenized and centrifuged before a lyophili-
sation of each supernatant. RNA extraction was per-
formed using the QIAmp viral RNA minikit according to 
the manufacturer’s instructions from resuspended lyo-
philizates in sterile water. Extracted RNAs were treated 
with Turbo DNAse (Invitrogen Inc., Carlsbad, CA) in 
order to remove contaminating DNA (i.e. host genome 
of Mus musculus) and then retrotranscribed into cDNA 
using SuperScript III reverse transcriptase (Invitro-
gen Inc., Carlsbad, CA) and random hexamer prim-
ers. This cDNA was amplified based on a universal and 
“unbiased” method with a phi29 enzyme as previously 
described [6]. The generated DNA fragments were used 
to construct a genomic library with the TruSeq DNA 
sample prep kit V2 (Illumina) according to the manufac-
turer’s recommendations. The Illumina Sequencing was 
conducted using HiSeq 2000.

Bioinformatic analysis
The quality of the reads was initially assessed by FastQC. 
The mouse genome sequence was filtered by mapping 
the selected reads on the Mus musculus Mn10 sequence 
using Bowtie 2.0 software with the “very sensitive” flag 
option [7]. All remaining reads corresponding to viral 
sequences were obtained based on “similarity-based” 
approach and used BLASTN and BLASTX with a defined 
number of targeted sequences available in sequence data-
banks (L22089, DQ294633.1 and KF680222.1). All viral 
reads were selected according to the percentage of iden-
tity (a minimum of 75 %) between the reads and reference 
sequences and a minimum alignment length of 60 bases 
including indel. In order to improve the assemblage qual-
ity of viral genomes, only the region of each read match-
ing BLAST results was selected and kept (Fig.  1). This 
way, all non-viral sequences potentially associated with a 
viral sequence inside the same read generated during the 
retrotranscription step were removed. The selected reads 
were assembled with different software, such as ABySS, 
Ray and SPAdes (version 3.0; 3.5 and 3.6) with different 
k values used to build the Bruijn graph [8, 9]. All genome 
assemblies were evaluated using the QUAST tool such 
as the number of obtained contigs, the size of the larg-
est contig, the N50 and L50 and finally, the coverage of 
the genome obtained [10]. The proportion of reads which 
unmapped on generated contig(s) for each set of data was 
determined by mapping, by using Bowtie 2.0 software 
with the “very sensitive” flag option and “End to End” 
as the alignment type in the Geneious R9 software. All 
chimeric reads were identified from a tabular output of 
a BLAST generated file which contained matching posi-
tions from reads against BLAST hits. A read was consid-
ered to be chimeric if its entire sequence did not belong 
to the alignment.

Assignation of the viral chimeric fragments
The taxonomic assignation of each viral chimeric frag-
ment was identified from the tabulated outputs of 
BLAST. For each alignment or high-scoring segment 
pairs (HSP) in the latter, the part of each viral read which 
did not align with the viral reference, was considered as 
a chimeric fragment. A python script allowed to retrieve 
such chimeric fragments and to plot their size distribu-
tion. They were then selected with a threshold of 30 bp 
minimum size and aligned with BLAST against viral 
references.

Graph complexity assessment
The complexity of graphs resulting from both tar-
geted and untargeted reads was assessed according 
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to the BEST theorem. The number of operations for 
counting eulerian paths was based on this following 
associated formula ec(G)  =  tw(G)∏v∈V(deg(v)−1)! 
[11].

Phylogenetic analysis
A total of 9 complete genome sequences of Mengovi-
ruses/EMCV that are available in GenBank were aligned 
using the ClustalW algorithm in Geneious software for 
Mac (Geneious version R9—http://www.geneious.com). 
The Bayesian Markov chain method in MrBayes (ver-
sion 3.2) was used to build the phylogenetic trees using 
two runs of four chains with 1 million generations, with 
a burn-in rate of 25 % and the GTR + G + I nucleotide 
substitution model [12].

Statistical analysis
Statistical analysis was performed using Excel software 
from Microsoft Office for Mac version 14.0. The Fisher 
test was used to compare the percentage of unmapped 
reads on contig(s) between sets of sequencing data.

Nucleotide sequence accession numbers
The whole-genome sequences are available in the DDBJ/
EMBL/GenBank database under accession number 
KU955338.

Results
Global analysis of sequencing data
A mean depth of 10 ×  106 single reads of 100 nucleo-
tides (nt) size was generated for each sample. According 

Fig. 1  Figure describing the main steps of retrotranscription, amplification of RNA and sequencing (a) and the viral reads’ filtering method (b). This 
method is divided in different parts. The first part obtains all reads in Fasta format after different types of filtration steps. The second step aims at 
selecting only the viral part in each read using a similarity-based approach. Finally, the last step is to perform assembly using different algorithms 
with targeted sequences. HTS high throughput sequencing; cDNA complementary DNA; ssDNA single strand DNA

http://www.geneious.com
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to the sample, about 33 to 44 % of all reads were filtered 
on Mus musculus Mm 10 reference genome by mapping 
with Bowtie 2.0 software. In the end, the reads’ propor-
tion retained after host read removal and quality trim-
ming ranged from 53 to 63  %. The mean trimmed read 
length ranged from 87.13 to 93.75 and the Phred score 
was 36 for each sample (Table  1). A total of 136,903; 
357,760 and 495,356 reads representing 2.1, 5.46 and 
6.1 % of trimmed reads (for ANRB3741, ARTB5290 and 
ARB19017 respectively) were selected through the use 
of BLASTN/X tools from a sample group of available 
sequences in GenBank (table in supplementary data). The 
quality of the assembly of viral sequences was compared 
based on the use of different assemblers. The number of 
contigs ranged from 35 to 20,618 depending on the indi-
vidually assembler tested (Table 2). The size of the larg-
est contig varied between 331 and 3492 for SPAdes v3.5 
(ARTB5290) and SPAdes v3.0 (ARB19017), respectively. 
The numbers of contigs generated with Ray were less 
numerous than those obtained with ABySS (12 to 35 ver-
sus 5908 to 20,618, respectively). However, the average 
of the largest contig size and N50 value was higher with 
Ray than ABySS (559 versus 124, respectively) (Table 2). 
Except for the ANRB3741 sample, the results for all the 
parameters of assembly were different according to the 
version of SPAdes tested (3.0 versus 3.5/3.6). Whatever 
the tested assembler, no full-length viral genome was 
directly obtained with untargeted sequences.

Assembly after chimeric part removal from reads
For each set of sequencing data, only the portion cor-
responding to a viral sequence was selected within the 
reads according to the BLAST result. They were named 
«targeted sequences» or TS. As before, the numbers of 
contigs ranged from 1 to 2463 according to the assem-
bler used (Table  2). Moreover, whatever the studied 
parameters on the size of generated contigs, their values 
were significantly higher in comparison with untargeted 
sequences (Table 2). Indeed, the size of the largest contig 
varied between 1807 and 11,468 respectively for ABySS 

and SPAdes v3.0 (ARTB5290). However differences 
were observed between the tested assemblers. Indeed, 
SPAdes v3.0 was able to obtain one contig that covers 
the full length of the viral genome and Ray two contigs 
overlapped by 15 bases. On the other hand, ABySS deliv-
ered a higher number of contigs whose sizes as well as 
the genome’s coverage were lower compared to those 
obtained with Ray and SPAdes v3.0 (Table 2). Two recent 
updates of SPAdes (version 3.5 and 3.6) were also tested 
with the same set of data. Unfortunately, similar results 
were obtained and these novel versions did not improve 
the quality of assembling, whatever the set of sequences 
tested.

Impact of chimeric reads on the assembly process
The influence of chimeric reads on the assembly process 
was evaluated through several parameters such as their 
proportion in each set of data or outputs of graphs pro-
vided by the assembler. The proportion of these reads, 
which contained viral and non-viral portions, repre-
sented 35.89, 50.72 and 64.13 % of the reads for the three 
samples tested (ArNB-3741, ARB5290 and ARB19017, 
respectively). Analysis of the chimeric part of each read 
showed that fragment size ranged from 1 to 73 bases 
with an average size from 16 to 32.7 bases (Additional 
file  1: Fig. S1). The proportion of chimeric fragments 
whose size was superior to 30 bases, ranged from 4.43 to 
72 % according to the considered set of data (Additional 
file 2: Table S1). After BLAST analysis of these fragments 
against viral genomes, only 28.8, 80.3 and 97.7  % were 
correctly aligned on reference sequences for AnrB-3741, 
ArB19017 and ArB5290, respectively (Additional file  2: 
Table S1). After the assembly process, the proportion 
of unmapped reads on different contigs previously gen-
erated was significantly different between targeted and 
untargeted sequences whatever the assembler used (p 
value 5.10e−6). Indeed, values ranged from 0.5 to 6.99 % 
and from 34.1 to 71.4  % for targeted and untargeted 
sequences, respectively. This proportion of difference of 
unmapped reads was also significant for each assembler 

Table 1  Overview of sequencing data

Middelburg ArTB 5290 Mengovirus AnrB 3741 Mengovirus ArB 19017

Total number of reads 11,875,121 11,925,315 12,708,896

Mean read length (bp) 101 101 101

Mus musculus reads removal by mapping 4,951,166 (41.69 %) 5,207,943 (43.67 %) 4,218,708 (33.35 %)

Trimmed reads (after host removal) 6,549,596 (58.31 %) 6,372,036 (53.43 %) 8,097,092 (63.71 %)

Mean trimmed read length (bp) 93.75 90.49 87.13

Mean Phred score 36 36 36

Total number of viral reads 357,760 (5.46 %) 136,903 (2.1 %) 495,356 (6.1 %)
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individually tested (ABySS and SPAdes 3.0 and 3.5/3.6) 
except for Ray (p value 0.14) (Table 3). Based on a second 
approach with graph generation, only Ray provided this 
output with several parameters such as the number of 
vertices and edges for each set of data. These numbers for 
untargeted reads assembly were two to four times higher 
than those for targeted sequences or with assemblies 
whose chimeric parts were removed (Table  4). Moreo-
ver, according to the formula based on the BEST theorem 
used for counting eulerian paths, all graphs with untar-
geted sequences showed a greater complexity in com-
parison with graphs from reads with removed chimeric 
parts. Indeed, the first and second factors of the product 
from BEST theorem’s formula depend on the number of 
edges and of vertices, respectively. Therefore, the increase 
of these values implied a rise in the complexity for untar-
geted reads graphs. Finally, all the set of data without chi-
meric reads (not only the chimeric parts but the whole 
reads) were mapped again on all the contigs obtained 
previously with targeted and untargeted sequences. The 

percentage of unmapped reads was significantly higher 
(1.8 versus 32.53 %, p value 1.8.10e−4) for sets of reads 
against contigs from targeted and untargeted sequences, 
respectively (data not shown). The initial presence of chi-
meric parts inside reads induced a huge number of small-
sized contigs as well as the generation of chimeric contigs 
whatever the assembler used.

Phylogenetic analysis of a novel variant of Mengovirus 
isolated in the Central African Republic
The Mengovirus belongs to the genus Cardiovirus and 
the Picornaviridae family. It was isolated for the first 
time in 1948 in Uganda from a rhesus monkey which had 
developed hind limb paralysis. Genomic analysis of 7717 
nucleotides for the strain ArNB-3741 showed the typical 
organization of the genome of the Mengovirus with one 
ORF encoding a polyprotein of 2293 amino acid flancked 
by two UTR in 5′ and 3′. Our genome of the Mengovirus 
shares 79.7 and 94.5 % at nucleic and amino acids levels 
with the sequence of the EMC virus (1086C), the closest 

Table 2  Assembly of  Mengovirus and  MIDV genomes with  different assembler software with  targeted and  untargeted 
sequences obtained after selection using similarity-based approach

The reads whose regions of the viral sequences were selected within the reads were named «Targeted Sequences» or TS, whereas the untreated sequences were 
named «Untargeted Sequences» or US

ArTB 5290 ArB 19017 AnrB 3741

Targeted Untargeted Targeted Untargeted Targeted Untargeted

ABYSS Contigs (≥50 bp) 2463 11,822 24 20,618 15 5905

Contigs (≥1000 bp) 3 0 2 0 1 0

Largest contig 1807 372 3219 195 7025 266

Mean length 88 84 576 82 392 82

N50 1185 124 2574 124 7025 124

L50 3 1501 1 2218 1 599

Ray Contigs (≥50 bp) 2 35 3 12 4 28

Contigs (≥1000 bp) 2 0 2 2 2 0

Largest contig 6906 837 4088 1873 4360 552

Mean length 4844 284 2013 210 2571 523

N50 6906 575 4088 1102 3745 552

L50 1 2 1 2 1 1

SPAdes v3.0 Contigs (≥50 bp) 2 371 1 16 1 322

Contigs (≥1000 bp) 1 2 1 2 1 0

Largest contig 11,468 1065 7548 3492 7562 951

Mean length 5789 145 7562 127 7548 110

N50 11,468 892 7548 3492 7562 951

L50 1 3 1 1 1 1

SPAdes v3.5/SPAdes v3.6 Contigs (≥50 bp) 5 10,435 7 569 2 322

Contigs (≥1000 bp) 1 0 1 0 1 0

Largest contig 11,314 331 7548 396 7548 951

Mean length 2359 100 3896 127 1174 110

N50 11,314 129 7548 141 7548 951

L50 1 2492 1 113 1 1
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strain. The phylogenetic tree based on the polyprotein 
sequence showed that our strain of Mengovirus isolated 
in the CAR belongs to the group of mengo/EMC viruses 
isolated from different species of rodents (mice and rats) 
(Fig. 2).

Discussion and conclusions
In this study, we describe an efficient procedure to 
improve the assembly of amplified RNA viral genomes 
based on the use of Phi29 polymerase. This method of 
amplification generated a large amount of amplified 
DNA. However, the major disadvantages are a stochas-
tic amplification bias and/or the generation of chimeric 
fragments. Indeed, detailed analysis showed hetero-
geneity either in the size of the chimeric fragments or 
in the nature of these sequences even if only fragments 
superior to 30  bp were analysed. These fragments have 
proven to be troublesome because they can disturb the 
assembly process. Indeed, these chimeric reads, whatever 

heterogeneity observed in their numbers, their sizes 
or their nature of sequences, will affect the De Bruijn 
graph construction by putting “false” k-mers in it. This 
can lead to count wrong paths in the graph, resulting in 
either finding false Eulerian paths if the “false” k-mers 
are shared among other reads, or yielding small con-
tigs. Although these assembly tools based on De Bruijn 
Graphs are widely used, the issue with the OLC method 
is pretty much the same when it comes to finding the 
overlap. Indeed, reads displaying chimeric parts won’t 
extend the assembly because the “false” overlap may not 
be present in other reads. The result will also be a poor 
quality assembly with multiple small contigs that failed 
to be extended. Basically, every assembler is affected the 
same way by chimeric reads because they rely on over-
lapping information. Some recent assemblers such as 
MetaVelvet or SPAdes contain a chimeric read removal 
module which is built on heuristics based on coverage 
difference [8, 13]. Unfortunately, our results tend to con-
firm that these chimeric junctions generated during the 
amplification step are not detected by these heuristics. 
However, current chimeric issues can be dealt with spe-
cific tools, which could detect said flawed sequences such 
as CHIMERA_CHECK, Pintail and Mallard [14–16]. But 
these tools are limited by the use of trusted chimera-free 
reference sequences. On the other hand, other tools such 
as Perseus or ChimeraSlayer are based on alignments [17, 
18]. According to the kind of samples tested, the chimeric 
reads removal approach is probably not the best answer 
because it often results in a low amount of employable 
unique read pairs for assembly [19].

In the field of metagenomics, one of the first priori-
ties in the analyses of the generated data is being able 
to assign contigs or singletons to a taxon, either by a 
sequence homology by searching for the signature an 
infectious agent (GOTTCHA), or by the use of another 
algorithm such as Kraken [4, 20]. Even if the size of the 
sequence which we aim to assign is not a limiting criteria, 

Table 3  Percentage of reads which unmapped on contigs generated with different assemblers

a   Determined according to the Fisher Test

Middelburg ArTB 5290 Mengovirus AnrB 3741 Mengovirus ArB 19017 p valuea

Abyss Targeted sequences 6.99 % 2.64 % 2.25 % 0.04

Untargeted sequences 40.59 % 36.93 % 69.78 %

Ray Targeted sequences 6.76 % 0.92 % 2.26 % 0.14

Untargeted sequences 53.84 % 51.5 % 71.41 %

SPAdes 3.0 Targeted sequences 0.57 % 0.82 % 0.65 % 0.001

Untargeted sequences 47.39 % 55.87 % 60.02 %

SPAdes 3.5/3.6 Targeted sequences 3.05 % 0.6 % 0.48 % 0.02

Untargeted sequences 34.12 % 55.54 % 60.02 %

p valuea 0.13 0.003 0.01 5.10e−6

Table 4  Graph features from targeted, untargeted and chi-
meric-part-removed reads

Parameters

Number of vertices Number of edges

MIDV ARB5290

 Targeted sequences 220,838 438,926

 Untargeted sequences 719,848 1,442,274

 Chimeric reads removal N.A N.A

Mengo 19017

 Targeted sequences 790,086 1,572,606

 Untargeted sequences 1,411,912 2,803,374

 Chimeric reads removal 573,848 1,143,146

Mengo 3741

 Targeted sequences 135,440 264,970

 Untargeted sequences 534,694 1,052,622

 Chimeric reads removal 58,452 115,682
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the bigger its size, the easier the assignation will be, espe-
cially if the divergence with a reference sequence is great. 
A de novo preliminary assembly step is usually achieved 
regardless of the method of preparation of nucleic acids 
and their prior amplification or non-amplification, in 
order to, on one hand, increase the size of the sequences 
to assign, and on the other hand, diminish their num-
ber. In this situation in metagenomics, when obtain-
ing the entire genome of a viral agent is less sought and 
very unlikely, obtaining very small-sized contigs after 
an assembly is sufficient to allow their assignation and 
to gather them in viral families [21]. However, in some 
cases, after identification by a metagenomic approach, 
obtaining a viral pathogen’s entire genome is important 
for a better molecular characterization of the identi-
fied viral strain. When the divergence with a reference 
genome is low, the sequence can be easily achieved by 
mapping, for example in the case of the Middelburg virus 
in this study [22]. However, in the case of a virus whose 
sequence is strongly divergent compared to the closest 
reference sequence (for instance in this study with our 
Mengovirus AnRB which presents about 20  % of diver-
gence on the nucleic level), the approach by mapping 
is not adapted except at the level of the slightly diver-
gent genomic region. In this case, the finalization of the 
genome can only be obtained either with the combina-
tion of the Sanger sequencing to complete the missing 
regions of the genome initially obtained through several 
contigs, or by improving the de novo assembly in order to 
obtain longer contigs covering the whole genome.

In conclusion, the elimination of the reads or of the 
chimeric portions in the reads generated during the RNA 
amplification steps are the key to an improvement in the 
assembling of the sequences in order to obtain the whole 
genome of the considered RNA virus. This procedure 
using a pipeline of tools is able to overcome potential 
drawbacks due to the amplification methods and yields a 
much better assemblage of viral genomes even when no 
close reference sequence is available.
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