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Abstract

Background: Plants of Agave spp. perform Crassulacean acid metabolism (CAM) and are highly drought-tolerant,
but little is known concerning seed germination under low water availability. The aim of this study was to assess
the effect of substrate water potential (W) on seed germination and contrast hydrotime parameters of seven
valuable and commercially-important Agave species from different geographical distributions and climatic regions
of Mexico. Our hypothesis was that seed germination of Agave species is not affected by low water availability
independently of seed biomass and the climate of their distribution area.

Results: Seed germination (at 25°C and in the dark) between 85 and 100% for all species occurred within 80-180 h
at -0.03 MPa and 250-430 h at -1.0 MPa. Seed germination at -1.5 MPa declined to less than 50% (p < 0.05) for A.
asperrima and A. cupreata but did not change significantly for A. americana var. marginata, A. lechuguilla and A.
striata, although they showed the lowest mean base water potential (-2.01 to -2.64 MPa). Seed germination of 40%
Agave species, from arid and semi-arid climates in this study, was not affected by the lower Wy,

Conclusion: Germination of seeds of Agave species is moderately affected by low water availability, is partially
dependent of their ecological distribution, and is independent of seed mass.
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Background

Approximately 74 Agave species and 28 intraspecific taxa
have been used in Mexico as human food, fodder, raw ma-
terial for fermented beverages and to obtain fibers; at least
48 of these species are currently used to produce spirits
called “tequila”, “mezcal”, “bacanora” and other distilled
with economic importance [1]. The agave plant is described
as a monocarpic perennial monocot that produces an in-
florescence only once towards the end of its long life cycle.
Each plant produces several hundred seeds and it has been
demonstrated for a number of Agave species and genotypes
that a large proportion of these seeds are viable [1,2]. Agave
plants reproduce both sexually and asexually, but they com-
monly propagate asexually via rhizomes and bulbils in the
wild [3]; this propagation favours successful seedling estab-
lishment by initial dependence on the mother plant.
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Agave species are Crassulacean acid metabolism (CAM)
plants distributed throughout a wide variety of environ-
ments, although a large number of them are found in
mesophyte communities [4]; moreover, they tolerate high
heat and dry conditions and efficiently produce a large
biomass in these environments [5], where few commercial
crops can grow. It has also been shown that after germin-
ation under optimal conditions, seedlings of A. salmiana
can grow on a substrate with a water potential (W)
of —2.5 MPa [6] and young and adult plants of A. salmiana
and A. angustifolia ssp. tequilana maintain active photo-
synthetic pathway after six months without water, and even
throughout the whole dry season [7,8]. It has also been
observed that root and leaf growth of young A. salmi-
ana plants is affected by frequent irrigation [8]. In
addition, the diversity of Agave species and environ-
ments where they are distributed show an array of spe-
cific physiological responses associated with the climate
where these plants naturally grow. This evidence sug-
gests that agave seed germination, in addition to other
physiological processes, might develop properly in con-
ditions which are suboptimal for other species.
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Figure 1 Calculated time-courses of cumulative seed water uptake of Agave spp. at 25°C, in the dark, and in substrate water potentials of

-0.03 (A), -1.0 (B) and -1.5 MPa (C). A. americana var. marginata (black line), A. asperrima (red line), A. cupreata (green line), A. duranguensis (gray line),
A. lechuguilla (dark blue line), A. salmiana (pink line) and A. striata (light blue line); n = 50.
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Germination is affected by intrinsic (species and seed
size) and environmental (temperature and water avail-
ability) factors; however, the seed germination of species
adapted to dry environments and cultivars selected for
drought tolerance are less affected by low substrate Wy
than those adapted to wet environments or classified as
drought-sensitive [9,10]. The hydrotime model has been
used to quantify the effect of substrate Wy on seed ger-
mination. The parameters that describe this model allow
quantification of the response of a seed germination
population to the substrate W and its biological variation
[11-13] and are also useful in understanding some of the
ecological relationships between plant species [9,14,15].

The aim of this study was to assess the effect of substrate
Wy on seed germination and contrast hydrotime parameters
of seven valuable and commercially-important Agave species,
with a long history of human usage and from different geo-
graphical distributions and climatic regions of Mexico. Our
hypothesis was that seed germination of Agave species is not
affected by low water availability independently of seed
biomass and the climate of their distribution area.

Results
Seed water uptake
Seed water uptake with maximum water availability
varied significantly (p <0.05) among species (Figure 1).
Imbibition by A. cupreata and A. duranguensis was 20%
higher than for A. americana and A. salmiana during
first 12 h of germination at -0.03 MPa, at Wy lower
than -0.03 MPa decreased significantly (between 42%
and 67%) for all species, and with the exception of A.
americana, A. cupreata and A. duranguensis decreased
linearly. Also, of these three species, initial seed water
uptake at -1.5 was not significantly different (p > 0.05)
than at —1.0 MPa (Figure 2A).

Differences and similarities in seed water uptake chan-
ged with time and with substrate Wy. Maximum seed
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Figure 2 Initial seed water uptake (after the first 12 h) (A) and
maximum seed water uptake (B) of Agave spp. during germination
in different substrate water potentials, in the dark and at 25°C.
A. americana var. marginata e, A. asperiima O, A. cupreata m,
A. duranguensis OJ, A. lechuguilla A, A. salmiana A and A. striata 4, n = 50.
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water uptake of A. asperrima and A. striata was signifi-
cantly higher (165%) than for the other five species and
strongly contrasted with that for A. americana and A.
salmiana, which had the lowest water uptake (100 and
115%) (p < 0.05) of all seven species at a W of —0.03 MPa
(Figures 1A and 2B). The initial accelerated water uptake
up to maximum germination, was on average 43% lower
(p < 0.05) at both low Wy (40 h) than at —0.03 MPa (70 h)
(Figure 1A—C). Maximum seed water uptake of all Agave
species reduced significantly in a non-linear fashion (50%
on average) with lower Wy, (Figure 2B) and the large dif-
ferences observed at —0.03 MPa among species almost dis-
appeared at —1.0 and -1.5 MPa (Figure 1A—C). In general,
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maximum seed water uptake of A. striata and A. asperrima
was among the highest at all three Wy, whereas that of A.
americana was among the lowest. Other differences in seed
water uptake were that only A. asperrima reached
similar (p >0.05) maximum seed water uptake at —1.0 MPa
and -1.5 MPa; and only A. duranguensis reached a higher
(p < 0.05) maximum seed water uptake at —1.5 MPa than
at —-1.0 MPa (Figure 2B).

Radicle emergence

All seven Agave species lacked significant seed dormancy
and mean cumulative germination (radicle emergence)
at —-0.03 MPa was 84—100% in 80 to 180 h, depending
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Figure 3 Time-course of cumulative germination of Agave spp. seeds in substrate at -0.03 MPa (A), -1.0 MPa (B), and -1.5 MPa followed
by -0.03 MPa (shaded area; C), in the dark and at 25°C. A. americana var. marginata (crosses), A. asperrima (red triangles), A. cupreata (green
triangles), A. duranguensis (gray stars), A. lechuguilla (blue circles), A. salmiana (pink squares) and A. striata (blue diamonds), n = 50.
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on the species (Figure 3A). On average, germination
at —0.03 MPa started at 72 h and significantly in-
creased almost each 12 h, up to 120 h. Maximum cu-
mulative germination was similar at Wy of -1.0 MPa
and at -0.03 MPa, but the time taken to reach the
maximum increased more than two-fold (Figure 3A-B).
On average, germination at —1.0 MPa started after 132 h
and significantly rose for 240 h, but the cumulative
germination increase was significantly each 12 or 24 h,
and was slower than at —0.03 MPa. In contrast, a Wy
of -1.5 MPa reduced on average 50% the maximum
cumulative germination of all species in comparison
with -0.03 and -1.0 MPa, except for A. striata and
A. americana (Figure 3C). Germination at -1.5 MPa
started after 209 h, but was significantly different
from the starting level until 228 h (almost zero), this
Y caused significantly rise of germination at 12, 24
and 36 h periods, but this rise was slower than at —1.0
and -0.03 MPa.

The rate of germination at Wy between -0.03 and
-1.5 MPa decreased linearly (p < 0.05) for all species (on
average from 0.26 to 0.06 seeds d™'), however, the decrease
in A. salmiana was the lowest (0.2 to 0.1 d'; Figure 4).
The hydrotime parameters of A. salmiana were notable
among all species as it had the highest 8;; and oy, and the
lowest Wy,(50). All species showed a relatively similar Oy
between 140 and 190 (Table 1), except for A. salmiana.
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Figure 4 Effect of the substrate water potential on the rate of
Agave spp. seed germination (1/tso). A. americana var. marginata
e, A asperrima o, A. cupreata m, A. duranguensis o, A. lechuguilla A,
A. salmiana A and A. striata #. Lines indicate the water potential
effect on the evaluated attribute, predicted by linear functions. The
vertical bars indicate one standard error, n = 50.
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Table 1 Parameters of the hydrotime model for seed
germination of seven Agave species under three
substrate water potentials (-0.03, -1.0 and -1.5 MPa)

Species Ou (MPah) Wy (MPa) Gy, (MPa) r?
A. americana var. 142 —2.01 044 0.823
marginata

A. asperrima 158 -1.58 0.37 0.881
A. cupreata 190 -1.82 046 0814
A. duranguensis 137 -1.68 0.58 0.775
A. lechuguilla 153 -1.84 0.36 0.892
A. salmiana 282 —2.64 0.81 0.768
A. striata 176 -2.02 041 0.829

6y hydrotime constant; Wy,sq): base water potential; oyy,: standard deviation of
Yooy % determination coefficient.

Recovery of germination

A large proportion (20-80%) of seeds of several species
did not germinate after a relatively long period (732 h)
at Wy of -1.5 MPa. However, germination continued
after 12-48 h when these seeds were transferred to a
substrate with a Wy of -0.03 MPa. Thus, A. cupreata,
A. striata, A. duranguensis and A. lechuguilla reached the
second final maximum cumulative germination (85-100%)
similar to that at -1.0 and -0.03 MPa (p > 0.05). Likewise,
germination of the other three species also increased up
to 80% after being transferred to the highly hydrated
substrate (Figure 3C). Under these conditions, most
Agave species tolerated slow seed water uptake and
survived for more than 30 d with 70% hydration with-
out damage.

Discussion

Seed water uptake

Germination phases I and II for the seven species
(Figure 1) were similar to those of dried mature seeds
of several A. salmiana genotypes [2]. Differences of initial
seed water uptake in phase I under maximum water avail-
ability (Figure 2A) show that A. cupreata, which originates
from a sub-humid climate (838 mm annual mean precipi-
tation; Table 2), imbibed more water than species from
arid and semi-arid climates (340-361 mm of precipita-
tion) i.e. A. lechuguilla, A. americana and A. salmiana.
However, this response was not common to all Agave
species but was the case for A. striata, with a high
water uptake during phase I of germination under the
three substrate Wy, it possibly can happen as an adap-
tation to arid habitats (287 mm of precipitation).

Seed water uptake is governed by several variables in-
cluding seed size and biomass [15], seed-soil Wy differ-
ence, seed contact area as affected by vapour or liquid
transfer, and conductive properties of the seed for both
liquid and vapour phases, among others [12]. In the
present study, seeds experienced similar conditions
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Table 2 Agave species used in this study and characteristics of collection sites in Mexico”

Subgenera Species Collection site Reproduction Climate (MAP)t Type of vegetation

Agave A. americana var.  San Luis Potosi, SLP Rhizomatous offshoots  Various (580) Artificial habitats and ornamental
marginata and seeds
A. asperrima Cerritos, San Luis Potosi  Rhizomatous offshoots ~ BS;kw (450) Piedmont scrub and xerophytic

Littaea

A. duranguensis

A. cupreata

A. salmiana

A. lechuguilla

A. striata

Guanajuato, Gto.
Chilapa, Guerrero

La Mantequilla, San Luis
Potosf

Guadalcézar, San Luis
Potosf

Guadalcézar, San Luis
Potosf

and seeds

Rhizomatous offshoots
and seeds

Seeds

Rhizomatous offshoots
and seeds

Rhizomatous offshoots
and seeds

Seeds and axillary
branching

BSokw(e) (484)
ACw;(w)()g (838)
BS1hw(e)g (361)
BW, BSo, BS; and

CW, (340)
BShw (280)

shrubland

Xerophytic shrubland, open pine,
and oak forest

Pine and oak forest, pastureland and
palm grove

Succulent shrubland and mycrophyllous
dry shrubland

Xerophytic rosette shrubland

Xerophytic rosette shrubland

ABased on information obtained from CONABIO [16], Garcia [17], Gentry [18], llsley et. al [19] and Ruiz-Corral et. al [20]. tMean annual precipitation (mm).

during germination, except substrate Y¥y. Maximum
seed water uptake was high in some species with a low
seed biomass, but no general correlation between the
two variables was noted. A. asperrima and A. striata had
a low mean seed biomass (2 and 5 mg; Figure 5) and
the highest maximum seed water uptake (160%), but
A. americana var. marginata, with one of the larger
mean seed biomass (11 mg), had the lowest maximum
seed water uptake (105%) at —0.03 MPa (Figures 1A,
2B and 5). Differences in maximum seed water uptake
among species (Figure 2B) were partly similar to those found
by Pefa-Valdivia et al. [2] for three A. salmiana genotypes

with different seed sizes. We suggest that this result
might be evidence for differences in seed water per-
meability among Agave species. Different ways of
water entry into the seed and contrasting sequences
of seed structure imbibition among species and culti-
vars have been previously documented [21,22]. Fur-
thermore, differences in maximum seed water uptake
during phase II of germination are due to changes in
volume and reorganisation of seed macromolecules
(e.g. polysaccharides and proteins) [23] that promote
more places on seed for water absorption [24]. During
this process, changes within the seed occur at different
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Figure 5 Frequency distribution of seed size (mass) of Agave spp. n=300. A; A. americana var. marginata, B; A. asperrima, C; A. cupreata, D;
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rates. Thus, low water availability (Vv between -1.0
and -1.5 MPa) might promote partial hydration and
volume increase of macromolecules in Agave seeds.
Despite controversy regarding the role of seed com-
position in seed water uptake, heterogeneity in max-
imum seed water uptake between a barley mutant and
a cultivar was explained by differences in seed chemical
composition [25]. In this context, Brancalion et al. [26]
observed a positive relationship between seed protein con-
tent and critical seed water content for germination in
five Brazilian tropical woody species.

Differences in maximum seed water uptake during
phase II of germination in Agave species (Figure 2B)
were similar to those for Festuca rubra ssp. litoralis,
Lolium perenne and Poa pratensis [27]. Results suggest
that Agave seeds at low substrate W\ reached a hydra-
tion threshold for radicle emergence. Therefore, more
time is required to reach the hydration threshold at low
Yy and radicle emergence will not occur [12]. The seed
water uptake threshold in most Agave species was approxi-
mately half that reached at the highest Wy (Figure 1A-B).
This difference was larger than that obtained with seeds of
Lolium perenne and P. pratensis; seed water uptake to ger-
mination in these species diminished from 100 and 90% to
an asymptotic level of 90 and 80%, respectively, when the
Yy changed from zero to —-0.8 MPa or less [27].

Radicle emergence

The lack of dormancy in several Agave species and geno-
types has been documented [1,2], as well as the high
reproductive effort expressed by semelparity and the
production of a huge amount of seeds by a single plant
[28]. In contrast, most Agave species in field conditions
predominantly present asexual reproduction [29]. The small
seed size, which varied between 2 and 11 mg (Figure 5), in
relation to the high plant biomass (200 kg estimated for an
A. salmiana adult plant), differs from the usual positive cor-
relation found between seed and plant size [30]. However, a
lack of dormancy and massive production of small and
viable seeds might favour the emergence of a large quantity
of seedlings when environmental conditions are favourable,
and represent an opportunity for repopulation based on
sexual reproduction.

The lowest substrate Wy, reduced the maximum accu-
mulated germination of some species (p < 0.05) (Figure 3C).
Agave germination at such restrictive substrate ¥y, under
laboratory conditions, might partially mirror the response
in the natural environmental conditions where each species
grows (Table 2). The low percentage of germination of
A. cupreata (20%) at —1.5 MPa (Figure 3C) appears to
be related to the sub-humid climate (838 mm mean
annual precipitation) where this species is distributed
and contrasts with the non-significant effect of this low
Yy on germination of A. striata (85%), A. americana (78%)
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and A. lechuguilla (70%) and the arid and semi-arid climate
(280-580 mm mean annual precipitation) within their nat-
ural distribution range. Nevertheless, this relationship was
not general, as A. asperrima reached a very low final cumu-
lative germination (30%) at Wy of —1.5 MPa, despite origin-
ating from a semi-arid climate region (450 mm mean
annual precipitation).

A lack of germination after 732 h, at —-1.5 MPa, sug-
gests that some Agave seeds lack some stimulus for ger-
mination, despite the imbibition of a similar amount of
water as those seeds already germinating at this specific
Yy (Figures 1 and 2). The lack of germination under
optimal conditions has been considered as dormancy
[12,31], and occurs by a variation of the critical seed W
to germinate among individual seeds within the same
population. Therefore, whereas the seed W\ remains at a
partially limiting level, the cumulative germination re-
mains as an asymptote. Inhibition and the absence of ger-
mination for some Agave species at -1.0 and -1.5 MPa
(Figure 3B-C) might be evidence of their tolerance to low
substrate Wy We recognised —1.5 MPa as an adequate
substrate Wy to identify the effects of water availability on
seed germination of Agave spp. and as a stress factor for
germination of these species.

The hydrotime model indicates that seeds do not ger-
minate below a Wy threshold, but up to this value, seeds
germinate because of 6y accumulation. Each seed in a
population varies in the threshold level of accumulated
Oy necessary to germinate, but Oy is constant for the
population as a whole [11-13]. Repeated measures ana-
lysis indicated that accumulation of 8y was delayed by the
low Wy Also it indicated that germination at —1.5 MPa
significantly increased at 12, 24 and 36 h intervals;
whereas at —0.03 and -1.0 MPa significant increase was
observed every 12 or 24 h. Then the Wy threshold was
lower than -1.0 MPa for the seven species, but even lower
for some of them, as A. striata and A. americana
(Figure 3C).

The huge difference in minimum water availability ne-
cessary for germination among Agave species was dem-
onstrated by the variation in 0y from 137 MPa h for A.
duranguensis to 282 MPa h for A. salmiana (Table 1).
According to Bradford [12], 8y is an indicator of seed
vigour and physiological quality; results suggested that
there was a gradient of vigour among Agave species
(Table 1). In general, the hydrotime model adequately
fitted data for the germination of Agave spp. (mean r* = 0.83).
However, individual r* values indicated that the hydrotime
model better explained seed germination of A. asperrima
and A. lechuguilla than that of A. duranguensis and
A. salmiana (Table 1).

The linear relationship between the rate of Agave seed
germination and substrate W (Figure 4) was similar to
that observed for sugar beet [11] and Eurotia lanata
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(Pursh) Moq. [32]. The rate of Agave seed germination
correlated positively with maximum seed water uptake
(r=0.74, p<0.05); although seeds absorbed more water
when water was abundant than when it was restrictive,
each seed had a seed water uptake threshold (¥,) to
initiate germination [13]. The W, of Agave species
(Table 1) was relatively similar to that of Solanum
lycopersicum seeds when they were exposed to a low
substrate Wy, which promoted their germination [33]
and was also similar to that of a group of 14 colon-
iser species [15]. In contrast, higher variation in Wys0)
(from —0.07 to —-5.92 MPa) was reported by Allen et al.
[9] for 24 xerophyte species grouped as species adapted
to salinity, sandy soils and diverse habits (generalist
species). The W},(50) has been considered as an indicator of
species adaptation to the environment, since salinity-
tolerant plants had the lowest W50y [9]. The Wy(s50), of
halophytes [9] and those of A. salmiana, A. americana
and A. striata (Table 1), suggests that germination can
occur in conditions of partly dry soil. According to cli-
mate data for the distribution regions (Table 2), A. stri-
ata, A. lechuguilla and A. salmiana might have less
available water than the other species for germination
under natural conditions, because the mean annual
rainfalls for their habitats are the lowest (287-
361 mm). However, maximum accumulated germin-
ation and rate of germination at low substrate W, Oy,
Wi,(50) and their dependence on seed mass appears not
to be a distinctive characteristic for these species.

Values of Wy s0) closer to zero for A. asperrima and A.
duranguensis (Table 1) indicate that germination might
only occur under well-watered soil conditions as
Allen et al. [9] observed for sandy soil species; how-
ever, results in Figure 3C indicate a different trend.
We presume that both these species might have
adapted to germinate during the wet season. Similar
findings were observed for S. lycopersicum cultivars,
where genetic improvement for tolerance or drought
resistance significantly diminished the W50, whereas
high values for this variable were characteristic for
drought-sensitive cultivars [34].

The similar oy, among species indicates some de-
gree of seed uniformity; small differences among
Agave species in Table 1 might result from partial
homogeneity of seed size (mass) among the species,
because seeds used in the study were restricted to a
seed biomass within one o range of the total sample
of each Agave species (Figure 5). The large oy, for A.
salmiana could be interpreted as a high ecological
plasticity, as W}, is more variable, and these seeds
might germinate under widely variable water condi-
tions (Figure 3). Germination of A. salmiana in ex-
treme environmental conditions, such as high
temperature, was recently reported [1].
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Recovery of germination

Seeds of most Agave species remained imbibed for more
than 30 d with 70% hydration without damage (Figure 3C).
The ability of these seeds to remain partially hydrated
without germination has been considered as a type of dor-
mancy and appears to be an appropriate response to arid
and semi-arid environments, since if germination occurs
at very low substrate Wy seedling survival will decrease
[31]. This seed tolerance appears to be associated with the
so-called “seed hydration memory” of several desert Cac-
taceae by Dubrovsky [35,36].

All these results confirm that Agave seeds can germin-
ate under adverse environment [1,2] but with some di-
verse responses to the natural environment among
species. It has been reported that sexual reproduction of
Agave spp. plants is unusual in the wild [28], therefore,
it is necessary to study the repopulation process in the
field.

Conclusions

Several Agave species lack seed dormancy independently
of species distribution. Agave species reach about half
the maximum seed water uptake under low water avail-
ability compared with well-watered substrates and most
of them reach more than 50% germination. Several
Agave species can maintain low seed water uptake for
several weeks and germinate rapidly when water avail-
ability increases. Germination responses of Agave species
from dry climate suggest adaptation to low water avail-
ability. Seed biomass do not appears to be a distinctive
characteristic for responses to water availability during
germination.

Methods

Plant material

Seven Mexican Agave species were studied, which all had
ancestral or current economic importance and belonged
to different geographical distributions with different cli-
mates, and had sexual or asexual (or both) reproduction
strategies or diverse systematic positions (Table 2). Fruits
from vigorous healthy plants were harvested and dried
under laboratory conditions (25°C and low relative hu-
midity). To standardise seed water content, seeds of each
species were placed in a cheesecloth-like bag inside a glass
jar three months prior to experimentation and maintained
at 4 + 1°C. Subsequently, four replicates, each with five
seed, were used to measure seed water content, which
was 7.62 £ 0.52%.

Seed biomass stratification

Seed biomass was obtained from a sample of 300 seeds
from each species (Figure 5). Because variation in seed
biomass within a species might affect germination, only
seeds within one standard deviation of the mean seed
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biomass for each species were used [1]. Agave duran-
guensis showed a bimodal seed size distribution; a pre-
liminary assay of germination showed little or no
germination of lighter seeds, therefore, heavier seeds of
this species were used for this study.

Substrate water potential and experimental conditions
Vermiculite was rinsed in tap water and then dried at
100°C to constant weight. Three different vermiculite
Yy (-0.03, -1.0 and -1.5 MPa) were obtained by mixing
100 g dry vermiculite with 170, 16 or 11 mL distilled
water (w:v) in polyethylene bags. These were sealed for
48 h before the start of the assay, according to Pefia-Valdivia
and Sanchez-Urdaneta [6], after which time a vermiculite
sample was incubated in a psychrometric chamber (Wescor
C-52, Inc, Utha, USA) for 4 h, and its Wy was subsequently
determined by connecting the chambers to a microvoltmeter
(Wescor HR-33 T, Inc, Utha, USA) operated in the
dew-point mode.

Individual seeds were sown at 1 cm depth in cylin-
drical polyvinyl chloride (PVC) containers (40 mm diam-
eter, 50 mm depth). Containers were filled with vermiculite
at each Wy and sealed with a piece of black polyethylene,
which was fixed with an elastic band to keep constant Wy
and were kept in the dark at 25 + 2°C.

Data recording and analysis
Seed water uptake (expressed as a percentage of initial
seed biomass) and seed germination were recorded every
12 h or daily up to maximum values. Germination was
considered to have occurred when the emerging root
was at least 5 mm long and maximum germination in
each treatment was determined when no additional
seeds germinated after 3—4 days. Vermiculite from each
experimental unit was renewed every 72 h to maintain a
constant substrate Wy,. When treatments at —-1.5 MPa
had reached maximum germination, non-germinated
seeds were transferred to vermiculite at —-0.03 MPa and
kept until germination occurred or seed damage appeared.
Germination attributes were analysed using the hydro-
time model. According to this model [11-13], seed ger-
mination can be described using the following equation:

Frog = Fov- (eH/tg)

where W}, was the base water potential (MPa) at which
the g seed sample germinates, Wy was the substrate
water potential (MPa), 8y was the hydrotime constant,
or the accumulated water-time required to germinate a
one g sample of a seed population (MPa h), and t, was
the time from water uptake until germination of the g
fraction (h or d). It was assumed that ¥y, was normally
distributed within a seed population, and that 6y was
constant for all seed fractions [13]. Apart from seed Wy,
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the median population Wy, can be estimated (¥ s0)) and
was defined as the base or minimum ¥y necessary to
achieve 50% germination. At this level of germination, it
was possible to quantify the time taken for 50% germination
(tso) or the rate of germination (1/tso). The standard devi-
ation (oy1,) of Wysp) was the parameter of Wy, variability.
The hydrotime parameters were calculated as de-
scribed by Allen et al. [9].

Experimental design and statistical analysis

This study was conducted using a completely rando-
mised design, with a factorial (7 x 3) arrangement of
treatments and five experimental units; each unit was a
group of 10 PVC containers. Factors were species (A.
americana var. marginata, A. asperrima, A. cupreata, A.
duranguesis, A. lechuguilla, A. salmiana and A. striata)
and substrate Wyy (-0.03, -1.0 and -1.5 MPa). The nor-
mality test was performed based on graphic residual
analysis and the Shapiro-Wilks test for data for initial
and maximum seed water uptake, rate of germination
(1/tsp) and the maximum accumulated percentage of
germination at every time. Data were transformed when
normality supposition failed. Variables were analysed
using the GLM procedure of SAS software, 9.17 version
(SAS Institute, NC, USA) and significant differences
among treatment means were established using Tukey’s
honest significant difference (HSD) test with o = 0.05.

A repeated measurements test was performed in order
to analyse variation of cumulatove germination along
the time. For this analysis Statistica Ver. 6 software was
used.
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