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Abstract
Prenatal ethanol exposure (PEE) (mainly through maternal alcohol consumption) has become widespread. However, 
studies suggest that it can cause intrauterine growth retardation (IUGR) and multi-organ developmental toxicity 
in offspring, and susceptibility to various chronic diseases (such as neuropsychiatric diseases, metabolic syndrome, 
and related diseases) in adults. Through ethanol’s direct effects and its indirect effects mediated by maternal-
derived glucocorticoids, PEE alters epigenetic modifications and organ developmental programming during fetal 
development, which damages the offspring health and increases susceptibility to various chronic diseases after 
birth. Ethanol directly leads to the developmental toxicity of multiple tissues and organs in many ways. Regarding 
maternal-derived glucocorticoid-mediated IUGR, developmental programming, and susceptibility to multiple 
conditions after birth, ethanol induces programmed changes in the neuroendocrine axes of offspring, such as the 
hypothalamus-pituitary-adrenal (HPA) and glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axes. In addition, 
the differences in ethanol metabolic enzymes, placental glucocorticoid barrier function, and the sensitivity to 
glucocorticoids in various tissues and organs mediate the severity and sex differences in the developmental toxicity 
of ethanol exposure during pregnancy. Offspring exposed to ethanol during pregnancy have a “thrifty phenotype” 
in the fetal period, and show “catch-up growth” in the case of abundant nutrition after birth; when encountering 
adverse environments, these offspring are more likely to develop diseases. Here, we review the developmental 
toxicity, functional alterations in multiple organs, and neuroendocrine metabolic programming mechanisms 
induced by PEE based on our research and that of other investigators. This should provide new perspectives for the 
effective prevention and treatment of ethanol developmental toxicity and the early prevention of related fetal-
originated diseases.
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Introduction
Drinking can be harmful to individuals [1–4]. Epide-
miological investigation shows that an estimated 10% of 
pregnant women consume alcohol globally, and prenatal 
ethanol exposure (PEE) has further increased in recent 
years [5, 6]. Many studies have shown that PEE has a 
more obvious damage to the fetus than the mother due 
to immature development and incompletely established 
homeostasis, which not only induces fetal developmen-
tal toxicity (including intrauterine growth retardation 
(IUGR) and fetal alcohol syndrome (FAS)), but also can 
lead to a series of long-term development-related health 
problems and susceptibility to conditions in adulthood 
(such as neuropsychiatric disorders and metabolic syn-
drome (MS)) [1–4, 7–9]. In the 1990s, Dr. David Barker 
performed a large-scale epidemiological investigation 
and found that the incidence of coronary heart disease, 
hypertension, hyperlipidemia and obesity was increased 
in adults with IUGR; he thus proposed the hypoth-
esis of the intrauterine origin of adult diseases [10–13]. 
Over the past three decades, numerous scholars have 
continued studies on the relationship between adverse 
environments during pregnancy, birth weight and the 
development of diseases in adults, and put forward a new 
concept — the Developmental Origins of Health and Dis-
ease (DOHaD). Upon further studies regarding DOHaD, 
the concept of intrauterine programming of diseases was 
proposed and improved.

Moisiadis and Matthews studied the role of endog-
enous glucocorticoids (GCs) (cortisol in humans and 
corticosterone in rodents) in fetal programming in 2014, 
believing that maternal GC overexposure may be the 
main cause of fetal programming and susceptibility to 
diseases in offspring [14]. Studies conducted in our lab-
oratory also found that PEE increased fetal exposure to 
maternal GCs by stimulating the maternal hypothala-
mus-pituitary-adrenal (HPA) axis and opening the pla-
cental GC barrier, increasing susceptibility to a variety of 
conditions such as MS, non-alcoholic fatty liver disease 
(NAFLD), and depression in adults [2, 15]. It was further 
found that the expression level of insulin-like growth 
factor 1 (IGF1) in the fetal liver determined the birth 
weight, organ structure, and functional development of 
the fetus [16–18]. Furthermore, PEE affected the level of 
GCs to regulate the expression of IGF1 [19, 20]. A cohort 
from Weeks et al. also reported that adults (22.2 to 44.4 
years old) with fetal alcohol spectrum disorders (FASDs) 
caused by PEE had an increased incidence of metabolic 
abnormalities, including type 2 diabetes, low HDL, high 
triglycerides, and female-specific overweight and obesity 
[21]. Therefore, changes in intrauterine neuroendocrine 
metabolic programming may be the key mechanism for 
a variety of neuropsychiatric and metabolic diseases in 
IUGR offspring caused by PEE [22]. However, there is no 

systematic experiment to support this claim or hypoth-
esis to explain it.

Currently, research on the developmental toxicity of 
PEE has made significant progress, but there is a lack 
of full understanding of its characteristics on offspring 
impacts, susceptibility to multiple diseases in utero pro-
gramming, and mechanisms of disease occurrence in 
PEE-induced adulthood. According to the work of our 
laboratory and that of other researchers, this review 
outlines the characteristics of offspring developmental 
toxicity caused by PEE, the role of neuroendocrine pro-
gramming and epigenetics in it, sex differences and pos-
sible mechanisms, suggesting that alterations in the HPA 
axis and GC-IGF1 axis programming may be the core 
mechanisms for the susceptibility to metabolic-related 
diseases in offspring caused by PEE, and proposing “dual 
programing” in utero and the “two strikes” theory of dis-
ease occurrence in adulthood caused by PEE. We wish to 
promote understanding of the toxicity caused by PEE and 
the mechanisms involved, to provide new perspectives 
on the early prevention and treatment of ethanol devel-
opmental toxicity-related fetal-derived diseases.

Short- and long-term effects of PEE
Many products contain ethanol, such as all baijiu, wine 
products, some skin-care products, dyes, paint removers, 
gasoline, disinfectants, detergents, and pesticide residue 
on food. Pregnant women often consciously or uncon-
sciously contact the above items. Among these, maternal 
drinking has the most obvious damage. In this section, 
according to different occurrence times of effects on the 
fetus, the developmental toxicity of ethanol is divided 
into short-term toxicity and long-term toxicity. Adverse 
effects on embryo and fetus are defined as “short-term 
toxicity,“ and, on postnatal offspring, they are called 
“long-term toxicity.“

Drinking alcohol during development of the embryo 
or fetus may cause miscarriage. The more drinks that are 
consumed and the longer the drinking occurs, the greater 
the possibility of spontaneous abortion. Drinking more 
than three days a week was associated with a higher risk 
of miscarriage [23–27]. IUGR is defined as the limitation 
on the growth and development of embryos or fetuses, 
which is characterized by multiple organ dysfunction, 
growth retardation, and low birth weight [22, 28]. IUGR 
is also one type of short-term toxicity caused by PEE 
[29–32]. An epidemiological investigation showed that 
the birth weights of offspring from mothers who drank 
were significantly lower than those of the control group 
[33]. Mouse studies found that acute ethanol exposure 
that occurred twice during pregnancy might inhibited 
cell proliferation during the trimester one, cell migra-
tion and differentiation during trimester two, and cellular 
communication and neurotransmission during trimester 
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three in offspring [34]. Studies in our laboratory also 
suggested that ethanol exposure during middle and late 
pregnancy significantly reduced the birth weight in mice, 
and the IUGR rate was as high as 80% [35]; moreover, 
ethanol exposure led to abnormal development or func-
tion in many types of tissues and organs in the fetus, such 
as the hippocampus, hypothalamus, adrenal gland, carti-
lage and bone (Table 1) [36–39].

In addition to short-term toxicity, PEE can also lead to 
long-term toxicity (Table 1). “Catch-up growth” is defined 
as the phenomenon by which longitudinal growth veloc-
ity transiently stands above the statistical limits of nor-
mality for age and/or maturity after the removal of a 
growth-inhibiting condition, which has been shown to 
be associated with increased susceptibility to various 
conditions including osteoarthritis, MS, insulin resis-
tance and other metabolic diseases such as diabetes and 
obesity [37–41]. PEE induced low birth weights, while 
mounting epidemiological and experimental studies have 
shown that low-birth-weight individuals frequently pres-
ent IGF1-induced “catch-up growth” after birth [37, 40], 
causing physical and mental abnormalities and increased 
susceptibility to MS and various metabolic diseases in 
adulthood [42, 43]. Studies showed that PEE increased 
apoptosis and inhibited proliferation of islet β cells and 
decreased insulin secretion in rat (at 13 weeks of age) and 
guinea pig (on postnatal day 150–200) before and after 
birth [8, 44, 45]. Our studies also showed that the adult 
offspring of rats exposed to ethanol during pregnancy 
had increased blood glucose levels when fed a normal 
diet and elevated blood glucose levels, insulin levels, and 
insulin resistance index when fed a high-fat diet, leading 
to decreased glucose tolerance and diabetes at postnatal 
week 17 and 24 [2, 41]. The mechanism of these effects 
is related to abnormal development of the pancreas 
mediated by programming alteration of the GC-IGF1 
axis [46]. In rats, offspring with IUGR induced by PEE 
also showed “catch-up growth” in body weight, elevated 
blood triglyceride levels, increased liver lipid and glyco-
gen synthesis, and inhibited lipid output, and these rats 
were more likely to have typical NAFLD phenotypes than 
the control rats [2]. In addition, we found that PEE of rats 
caused retardation of bone growth, inhibition of endo-
chondral ossification, delayed development of primary 
and secondary ossification centers [36], and poor carti-
lage quality in offspring before and after birth [39]; these 
findings were consistent with those of Simpson et al. [47]. 
Moreover, the persistent poor cartilage quality before and 
after birth (at postnatal week 24) caused by PEE in rats 
was related to the low functional programming of local 
IGF1 signaling, while high-fat diet after birth increased 
blood cholesterol content and deposition in cartilage, 
which further induced osteoarthritis [38].

Characteristics of developmental toxicity induced 
by PEE
Epidemiological investigations showed that fetuses suf-
fered from FAS when pregnant women were exposed to 
ethanol at 3.0–4.3 g/kg·d [54], or even at doses as low as 
0.35  g/kg·d [55]. Simpson et al. found that when preg-
nant rats were fed diets of equal calories but different 
ethanol proportions, the fetal offspring in the high-dose 
group (36% ethanol-derived calories) showed significant 
reductions in body weight and length and inhibition of 
ossification, while only a delay in radius was observed in 
the low-dose group (15% ethanol-derived calories) [47]. 
It has been suggested that the higher the ethanol dose 
during pregnancy, the more developmental toxicity to 
the fetus. However, there are reported differences in the 
toxicity of low-dose ethanol exposure to the fetus. The 
results of the epidemiological investigations of Kelly et 
al. and Robinson et al. indicated that the toxicity of light 
alcohol (1–2 drinks per week or per occasion in Kelly’s 
study; 2–6 standard drinks per week in Robinson’s study) 
consumption during pregnancy was minimal or could not 
be observed in the offspring [56, 57]. However, Gray et al. 
believed that these negative results have arisen from, for 
example, the lack of rigorous experimental design, short 
observation times, and incomplete detection indicators. 
They suggested that due to the different metabolic rates 
of ethanol among individuals, peak blood alcohol levels 
are higher and residual time is longer in pregnant women 
with slow metabolism; therefore, low-dose ethanol con-
sumption can seriously impair fetuses in this subpopula-
tion [58]. The findings of Lewis et al. corroborate those of 
Gray et al. in a study of 15,000 pregnant women, Lewis et 
al. found that despite the same amount of ethanol con-
sumed during pregnancy, the intelligence quotient (IQ) 
scores of the 8-year-old children of women with etha-
nol metabolic enzyme deficiency were lower than those 
of women with normal ethanol metabolic enzyme levels 
[9]. Moreover, Lewis et al. also suggested that the genetic 
variation of both mother and fetus is an important mod-
erator of the fetal effects of alcohol [9]. This suggests that 
the fetal toxicity induced by PEE is not only related to the 
amount of ethanol consumed but also to the ethanol met-
abolic capacity and genetic variation of the mother and 
fetus. Therefore, Gray indicated that the determination of 
a ‘safe’ level which can be uniformly recommended for all 
pregnant women seems unrealistic [58].

Time is another important factor in the toxicity 
induced by PEE. Short-term exposure to high doses of 
ethanol directly damages fetal tissue, especially during 
stages of fetal development, resulting in miscarriage, still-
birth, and malformation [59, 60]. Fish et al. found that 
after acute exposure to 2.8  g/kg ethanol twice in early 
pregnancy, the morphology of the cerebellum, hippocam-
pus, striatum, and corpus callosum changed in fetal mice. 
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Species Time Dose Tissues/organs Short-term adverse effects Long-term adverse 
effects

Refer-
ence

Humans
First trimester 1–2 drinks/day* – Elevated spontaneous 

abortion
–  [23]

Gestational 
week 6–16

5 units@ or more 
alcohol/week

– Elevated spontaneous 
abortion

–  [24]

– 10 or more drinks
/week#

– Elevated 2–3 (females)/2–5 
(males) times spontaneous 
abortion

–  [25]

Gestational 
week 0–20

4 + drinks/week – Elevated miscarriage –  [26]

Gestational 
week 0–10

4 + drinks/week – Miscarriage is strongest for 
miscarriage occurring prior 
to 10 weeks of gestation; 
women who drank only spir-
its had more than a two-fold 
increased risk of miscarriage

–  [27]

Gestational 
week 28–36

100 g/week – Poor fetal growth is in-
creased; IUGR

–  [29]

Throughout 
pregnancy

Three drinks or more – Decreased birthweight –  [30]

First trimester Four drinks/week – Reduction in fetal growth –  [31]

Gestational 
months 1 
and 7

Low-to-moderate 
drinking

– IUGR, preterm delivery, low 
birthweight

–  [32]

Gestational 
weeks 20–44

1–2, 3–4, and ≥ 5 
drinks/week

– SGA, interaction between 
prenatal alcohol consump-
tion and smoking

–  [33]

Mice
GD8–11, 14–16 5 g/kg Brain – Disrupted cell proliferation, 

migration differentiation 
and communication and 
neurotransmission (PD4-60)

 [34]

GD11–17 6.4 g/kg·d HPA axis IUGR, inhibition of fetal HPA 
axis activity

–  [35]

Wistar rats
GD9–20 4 g/kg·d Bone Suppressed osteoclast 

differentiation
–  [36]

GD9–20 4 g/kg·d Adrenal developmental 
abnormality

CORT level was decreased; 
partial “catch-up growth” 
(PW4 and 24)

 [37]

GD11–20 4 g/kg·d Cartilage Chondrodysplasia “Catch-up growth”; Sus-
ceptibility to osteoarthritis 
(PW4 and 24)

 [38, 
39]

GD11–20 4 g/kg·d Liver Low body weight; hy-
perglycemia; hepatocyte 
ultrastructural changes

“Catch-up growth”; in-
creased the susceptibility to 
NAFLD (PW1, 4 and 24)

 [2]

GD 11 until 
term delivery

4 g/kg·d Hypothalamus/pituitary 
gland/liver

- “Catch-up growth”; 
enhanced susceptibility 
to MS; neuroendocrine 
metabolic programming 
(PW16 and 20)

 [41]

GD9–20 4 g/kg·d Blood/pancreas Serum glucose and insulin 
levels as well as pancreatic β 
cell mass were reduced

Pancreatic dysplasia and 
impaired insulin biosynthe-
sis (PW12 and 24)

 [46]

GD9–20 4 g/kg·d Testis Morphological abnormality; 
low serum testosterone

Testicular dysplasia; low 
serum testosterone levels 
(PW6 and 12)

 [48]

Table 1 Short- and long-term adverse effects on offspring of PEE
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In the offspring of male mice (on postnatal day 28–45), 
activity increased in maze tests and the preference for 
a rich environment decreased, and in the female off-
spring, exploratory behavior increased and cage running 
decreased [61]. Diaz et al. also found that acute ethanol 
exposure in mid-pregnancy (12 or 15 days of pregnancy) 
was associated with neurobehavioral abnormalities in 
offspring of early and late adolescent or young adult 
Sprague Dawley rats, but differed with exposure time, 
species (although there are few reports), and sex [62]. 
Typically, these abnormalities were greater in Long Evans 
males and Sprague Dawley female rats [62]. Chronic 

ethanol exposure often causes persistent damage in the 
middle and late stages of pregnancy and leads to serious 
fetal developmental toxicity (such as IUGR [35]). A study 
by Dettmer et al. showed that chronic ethanol exposure 
during pregnancy caused long-term inhibitory effects 
on N-methyl-d-aspartate receptor subtype 2B (NR2B) 
(a glutamate-gated ion channel) in the cerebral cortex 
of guinea pig offspring and upregulated the expression 
of glutamate receptor subunits (GluR2/3); these changes 
may be related to the neurobehavioral changes observed 
in guinea pig offspring on postnatal day 61 [63]. A study 
by Iqbal et al. showed that PEE led to changes in the 

Species Time Dose Tissues/organs Short-term adverse effects Long-term adverse 
effects

Refer-
ence

GD9–20 4 g/kg·d Ovary Decreased number and 
proliferation of oocytes, 
and increased apoptosis of 
oocytes

Increased atretic follicles; 
susceptibility to prema-
ture ovarian insufficiency; 
decreased serum estradiol 
(E2) levels (PW6 and 12)

 [49]

Sprague Dawley rats
Throughout 
pregnancy

4 g/kg·d Muscle/pancreas Decreased body size; induc-
ing insulin resistance and 
beta-cell dysfunction

“Catch-up growth”; impairs 
glucose tolerance (at 4. 7 
and 13 weeks of age)

 [8]

Throughout 
21 days of 
gestation

15%, 25%, or 36% 
ethanol-derived 
calories

Skeleton Decreased fetal body 
weight, length, and skel-
etal ossification; growth 
retardation; restricted bone 
development; increased 
offspring risk of osteoporosis 
later in life

–  [47]

GD11-20 35% of daily calories 
from ethanol

– – Enhanced ethanol intake 
and the behavioral re-
sponse to ethanol odor in 
adult (PD30-90)

 [50]

Guinea pigs
Throughout 
gestation

4 g/kg·d Prefrontal cortex/liver – Increased liver weight; 
metabolic dysregulation; 
neurobehavioral teratoge-
nicity (PD150-200)

 [44]

Throughout 
gestation

4 g/kg·d Adiposity/ pancreas Growth restriction at birth “Catch-up growth”; in-
creased visceral and subcu-
taneous adiposity; reduced 
insulin production and/or 
secretion(PD100-140 and 
150–200)

 [45]

GD2–67 4 g/kg·d Hippocampus – Behavioral and cognitive 
deficits (PD60)

 [51]

Sheep
GD95-133 0.75 g/kg Kidneys Reduction in nephron 

endowment
–  [52]

GD9-135 0.75 g/kg Lung Surfactant phospholipid 
concentration was reduced 
and the composition was 
altered by ethanol exposure

The adverse effects of 
ethanol exposure on lung 
do not persist to 2 month 
after birth

 [53]

* In calculating total alcohol consumption, one and a half glasses of wine were considered equivalent to a glass of beer or measure of spirits (“one drink”);@ The 
author divided the number of alcoholic drinks into no alcohol, 1–4 units and 5 + units per week according to the investigation; # one drink = 12 g of alcohol; IUGR, 
intrauterine growth retardation; SGA, small for gestational age; E, embryonic day; GD, gestational day; PD, postanal day; PW, postanal week; NAFLD, non-alcoholic 
fatty liver disease; MS, metabolic syndrome; HPA, hypothalamus-pituitary-adrenal; CORT, corticosteron

Table 1 (continued) 
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protein level of the γ-aminobutyric acid type A (GABA-
A) receptor β-2/3 subunit in the adult offspring of guinea 
pigs and damaged their spatial learning ability, which was 
potentially related to FAS and long-term harm [51]. Pre-
vious studies in our laboratory found that ethanol expo-
sure during middle and late pregnancy in rats caused 
the dysfunction of glucose lipid metabolism in liver and 
HPA axis, therefore increasing the susceptibility of adult 
offspring to NAFLD, MS, and cholesterol-accumulation-
related osteoarthritis, and there were differences between 
males and females [2, 35, 38, 39, 41, 64].

In summary, PEE, whether acute or chronic exposure 
(at least at high doses), causes a variety of adverse effects 
in offspring. Ethanol exposure in early pregnancy leads 
to structural abnormalities of the nervous system and 
adverse pregnancy outcomes, while in middle and late 
pregnancy, it is more likely to lead to IUGR, functional 
abnormalities, and susceptibility to multiple diseases in 
adulthood.

Developmental toxicity induced by the direct 
action of ethanol
In adults, 90–98% of absorbed ethanol is metabolized 
in the liver, while only 2–10% is directly excreted from 
the kidneys and exhaled from the lungs. Ethanol and its 
main metabolite, acetaldehyde, are small hydrophilic 
compounds that can directly enter the fetus through 
the placental barrier. After drinking three to five bottles 
of alcoholic drinks (approximately 150 mg/dl), the aver-
age human blood alcohol concentration is 33 mM, and 
the blood ethanol concentration of alcoholics is approxi-
mately 20–170 mM [65]. Previous work in our lab indi-
cated that at a maternal ethanol consumption of 4 g/kg·d 
in rats, the serum ethanol concentration in the mother 
and fetus was 87 mM and 58 mM, respectively [2], indi-
cating that ethanol can easily cross the placenta into the 
fetus. Cumming et al. indicated that the activity of liver 
alcohol dehydrogenase (ADH) in a fetus during late preg-
nancy or in newborn sheep was only 7% that of adults, 
and ADH activity in the placenta was even lower [66]. 
Pikkarainen and Räihä measured the activity of ADH 
in humans, and found that although fetal ADH activ-
ity in the second month of pregnancy was detectable, 
it was just 3–4% of the adult level. With an increase in 
gestational age, the activity of ADH gradually increases, 
but is always lower than that of adults [67]. Because the 
capacity of the fetal liver to metabolize ethanol is not 
mature, the actual metabolic burden in the develop-
ing fetus may be much higher than that in adults under 
similar conditions. In other words, the fetus is more 
prone to the direct toxic effects of ethanol. Chen et al. 
found that ethanol directly inhibited the Wnt/β-catenin 
pathway through oxidative stress to delay the differentia-
tion of bone mesenchymal stem cells (BMSCs) and bone 

dysplasia, or directly upregulated IGF1 signaling pathway 
to cause ovarian cell apoptosis and premature ovarian 
insufficiency in female Sprague-Dawley rats [68]. Sun et 
al. also found that PEE can affect individual metabolism 
of endogenous and exogenous substances in early adult-
hood due to the direct effect of ethanol on impairment of 
protein levels and enzyme activities of cytochrome P450s 
(CYPs) in rats [69]. These results indicate that ethanol 
causes direct toxicity to multiple fetal tissues and organs 
via many mechanisms.

Developmental toxicity mediated by fetal exposure 
to excessive maternal glucocorticoids induced by 
PEE
In most previous studies, the developmental toxicity of 
ethanol was believed to be related to the direct action of 
ethanol on a fetus. However, in recent years, the influ-
ence of elevated levels of maternal-derived GCs induced 
by PEE has attracted more and more attention. Although 
current studies have shown that PEE increases maternal 
and fetal blood ethanol levels in a dose-dependent man-
ner [2, 35, 70–72], there has been no direct comparison 
of the effects of different doses of prenatal ethanol on 
fetal serum GC levels in humans. The reports are differ-
ent in animal models, but the existing literature suggests 
that the higher the dose of prenatal ethanol and the lon-
ger the duration, the higher the maternal and fetal GC 
levels [2, 35, 70–72].

Maternal glucocorticoid overexposure in offspring induced 
by PEE
The placenta is crucial for normal fetal development. 
Placental 11β-hydroxysteroid dehydrogenase type 2 
(11β-HSD2) and P-glycoprotein (P-gp) are key media-
tors of maternal GC inactivation and transport [73–76]. 
11β-HSD2, the key enzyme catalyzing GC oxidation, is 
believed to be the “gate-keeper” of the placental barrier 
against GCs [77, 78]. Because adrenal gland function is 
immature during the fetal period, fetal GC levels mainly 
originate from the mother through the placental GC bar-
rier [79, 80]. Population and rodent studies showed that 
placental 11β-HSD2 activity was easily affected by vari-
ous adverse conditions during pregnancy, resulting in 
exposure of the developing fetus to excessive maternal 
GCs [81, 82]. The concentration of cortisol in the serum 
and urine of drinkers was significantly higher than that in 
non-drinkers [83–86]. We also confirmed in rats that PEE 
increased maternal GC levels via a stress response and 
opened the placental GC barrier (ethanol directly down-
regulated 11β-HSD2 expression through cAMP/PKA/
EGR1 signaling), resulting in fetal exposure to excessive 
maternal-derived GCs and inducing IUGR [35].

Placental ATP binding cassette (ABC) transporters 
protect placental and fetal tissues by excreting exogenous 
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and endogenous metabolites. ABCB1/MDR1, namely 
P-gp, is the most abundant drug efflux transporter 
expressed in the membrane on the maternal side of the 
placental syncytiotrophoblast, representing another GC 
barrier on the placenta. P-gp transports GCs back to the 
maternal side against the concentration gradient, which 
limits the entry of GCs into placental cells and fetuses, 
thus reducing fetal exposure to maternal GCs [87]. Stud-
ies have suggested that the expression of P-gp decreased 
in the intestinal epidermal cells of mice exposed to etha-
nol [88]. Our previous study also showed that the expres-
sion of P-gp in rat placenta decreased after exposure to 
ethanol alone [89], the mechanism of which is related to 
expression and activity changes in the JNK/YB-1/P300 
pathway [90]. In addition, P-gp inducers can decrease 
maternal-derived GCs and IUGRs of offspring caused 
by adverse environmental conditions (including ethanol 
exposure) during pregnancy [90]. It is suggested that the 
expression and functional inhibition of placental P-gp 
are also involved in the opening of the placental GC bar-
rier caused by PEE. In conclusion, changes in the placen-
tal barrier caused by PEE caused fetal overexposure to 
maternal-derived GCs.

Excessive exposure of fetuses to maternal glucocorticoids 
mediates offspring IUGR and postnatal susceptibility to 
multiple conditions
Basal levels of GCs play an important role in regulating 
the biosynthesis and metabolism of saccharides, fat, and 
protein and the proliferation and differentiation of cells. 
GCs are not only important factors in regulating fetal 
development and maturity, but they are also critical in 
determining the fate of the fetus after birth. Maternal 
GCs are the main source of fetal GC levels [35, 80]. A 
large number of reports suggest that high maternal GCs 
program the susceptibility of offspring to multiple con-
ditions after birth [22, 79]. Human offspring with IUGR 
were found to have increased cortisol concentrations of 
umbilical cord blood at birth [91]. A variety of adverse 
factors during pregnancy can lead to increased fetal GCs 
and abnormal fetal development [81, 82, 92, 93]. Our 
previous studies also confirmed that the blood corticos-
terone levels of IUGR fetal rats exposed to ethanol dur-
ing pregnancy were significantly higher than those of 
the control group; under these conditions, activity of the 
HPA axis in the maternal rats increased, while the syn-
thesis of fetal adrenal steroids was inhibited, suggesting 
that maternal-derived GC overexposure occurred in the 
fetal rats [2, 35]. Furthermore, the increased expression 
of fetal liver triglyceride (TG) synthase, decreased neuro-
nal activity in the paraventricular nucleus (PVN) region 
of the fetal hypothalamus, decreased activity of the fetal 
adrenal IGF1 signaling pathway, and inhibition of osteo-
clast differentiation at the osteo-cartilage interface were 

found to be mainly related to high maternal GCs induced 
by PEE [2, 35–37]. These studies all indicate that over-
exposure to maternal GCs may be another important 
mechanism of offspring IUGR and the susceptibility to 
multiple diseases in adulthood caused by PEE.

Mechanism of maternal-derived glucocorticoid-
mediate intrauterine neuroendocrine metabolic 
programming induced by PEE
Intrauterine programming refers to the process of per-
manent changes in morphology and function of embry-
onic or fetal tissues and organs [22]. Under physiological 
conditions, a variety of neuroendocrine hormones are 
involved in programming the development and func-
tion of multiple fetal organs. As a core component of the 
“DOHaD”, intrauterine programming is also responsible 
for pathologies (susceptibility to multiple conditions). 
However, to date, the intrauterine programming mecha-
nism of IUGR in offspring has not been systematically 
clarified. Recently, a series of studies by us and other 
researchers may have confirmed that alterations in intra-
uterine neuroendocrine metabolic programming induced 
by maternal GC overexposure were associated with sus-
ceptibility to multiple chronic diseases in adults [22, 94, 
95].

Intrauterine maternal glucocorticoid overexposure and 
developmental programming of the HPA axis
The HPA axis, a neuroendocrine axis, plays an impor-
tant role in prenatal and postnatal stress and defense 
responses. Mounting studies from human or animals 
have indicated that PEE causes changes in an offspring’s 
HPA axis, which are manifested as low basal activities 
from the intrauterine to early postnatal periods and high 
stress sensitivity throughout life [14, 96–98].

Low basal activity programming of the HPA axis
Although conclusions were not entirely consistent, accu-
mulating studies have shown that the HPA axis has low 
basal activity in IUGR rats exposed prenatally to ethanol 
[96–99]. Previous studies from our group also found that 
the blood adrenocorticotropic hormone (ACTH) and 
corticosterone levels in IUGR rats induced by PEE were 
lower after birth than those of the control rats [41, 64]; 
it was further confirmed that fetal rats exposed to alco-
hol during pregnancy had low adrenal function, mainly 
manifested by reduced expression of steroidogenic acute 
regulatory protein (StAR) and cytochrome P450 family 
11 subfamily A member 1 (P450scc) [35, 37], suggesting 
that the low basal activity of the HPA axis caused by PEE 
originated from the fetus.

The concentration of basal GCs during the fetal period 
and normal development of the fetal adrenal gland deter-
mine fetal maturity and postnatal fate [14, 100, 101]. It 
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was found that development of adrenal function in IUGR 
offspring was delayed, resulting in low-activity program-
ming of the HPA axis, which is consistent with the low 
activity of the HPA axis observed in offspring exposed 
prenatally to ethanol [97]. Our previous studies found 
that ethanol exposure during middle and late pregnancy 
inhibited the functional development of the HPA axis in 
fetal rats, which was manifested through fetal overexpo-
sure to maternal GCs, decreased corticotrophin-releasing 
hormone (CRH) and arginine vasopressin (AVP) levels in 
the hypothalamus, and decreased StAR and P450scc (the 
key genes of adrenal steroid hormone synthesis) expres-
sion [35, 37, 102]. Moreover, fetal maternal GC overex-
posure inhibited the steroid synthesis function of fetal 
adrenal cortical cells in a concentration-dependent man-
ner, the mechanism of which was mainly related to the 
hypofunctional programming of adrenal corticosteroid 
synthesis induced by the GC activation system, including 
11β-HSD1/2, GC receptor (GR), and CCAAT/enhancer 
binding protein α (C/EBPα). These effects continued 
after birth and even into adulthood [37]. Therefore, the 
changes in functional programming of the adrenal gland 
caused by maternal-derived GC overexposure induced by 
prenatal ethanol are an important reason for the intra-
uterine origin of the low basal activity of the HPA axis.

Stress hypersensitivity programming of the HPA axis
A number of studies from humans and animals have con-
firmed that stress hypersensitivity of the HPA axis is one 
of the key mechanisms in MS (e.g., diabetes and NAFLD) 
and mental disorders (e.g., depression and schizophre-
nia) susceptibility originating from fetuses [97, 103–106]. 
PEE programmably alters the stress sensitivity of the 
HPA axis in human and animal offspring [35, 97], but 
its specific mechanism has not been fully clarified. Our 
previous studies found that PEE in rats reduced serum 
ACTH and CORT levels by 65% and 60%, respectively, 
but there were no significant differences between PEE 
and control groups after chronic stress. Moreover, the 
increased rates of ACTH and CORT concentrations in 
offspring after PEE were significantly higher than those 
in offspring without exposure [41], suggesting that the 
offspring exposed prenatally to ethanol had stress hyper-
sensitivity of the HPA axis, which was consistent with 
other basic research and clinical reports [97, 98, 107, 
108]. Furthermore, we found that, in the offspring of rats 
exposed to ethanol during pregnancy, excitatory poten-
tial increased in the PVN of the hypothalamus whether 
examining fetal or adult offspring and this effect was 
characterized by invariable expression of an excitatory 
glutamate transporter (vesicular glutamate transporter 2 
(VGluT2)) and decreased expression of inhibitory GABA 
synthase (65 kDa glutamic acid decarboxylase (GAD65)), 
resulting in a significant increase in the VGluT2/GAD65 

ratio [109]. It is suggested that PEE permanently changes 
the setting point and sensitivity of hypothalamic PVN in 
offspring, resulting in stress hypersensitivity of the HPA 
axis.

As an advanced regulatory center, the hippocampus 
plays an important role in the HPA axis. The affinity of 
hippocampal mineralocorticoid receptor (MR) for GC is 
more than 10 times that of the GR [110]. When the GC 
level is low, almost all the GCs bind to the MR to regulate 
basal activity of the HPA axis; when GC levels increase, 
saturating the MR, GC then binds to the GR, resulting 
in glutamate release [111] and attenuation of the overac-
tive HPA axis to the basal state through the Glu-GABA 
synaptic connection [112, 113]. Therefore, the balance 
of hippocampal MR/GR expression is critical to regulate 
HPA-axis activity, which directly determines the ratio 
of hippocampal VGluT2/GAD65 [104, 114]. It has been 
found that hippocampal GR participates in perinatal pro-
gramming of the HPA axis by negatively regulating the 
expression of CRH [115]. After birth, the balance of MR 
and GR is maintained [116, 117]. However, once they are 
imbalanced, dysfunction of the HPA axis occurs, which is 
a typical response of the hippocampus to chronic stress 
or depression. Our studies found that PEE increased GR 
expression in fetal rats, leading to decreased MR/GR and 
increased VGluT2/GAD65 expression ratios. When the 
offspring of female rats exposed prenatally to ethanol 
were subjected to chronic stress (cool water swimming), 
the expression of GR in the hippocampus was higher 
than that of the control rats, the expression ratio of MR/
GR was further reduced, and the VGluT2/GAD65 ratio 
was further increased. At the same time, pathological 
changes such as cell arrangement disorder, deep nuclear 
staining and shrinkage in the dentate gyrus (DG) and 
CA3 areas of the hippocampus were aggravated [102, 
109]. These results suggest that PEE reduces negative 
regulatory effects on the hypothalamus to enhance its 
excitatory potential. The above changes can continue into 
adulthood. After chronic stress, the hippocampus dam-
age is aggravated and the regulatory ability to HPA axis is 
further reduced, leading to hyperexcitation of the hypo-
thalamus and finally to stress hypersensitivity of the HPA 
axis.

Intrauterine maternal glucocorticoid overexposure and 
developmental programming of the GC-IGF1 axis
IGF1 and its downstream signals are involved in regu-
lating the development, differentiation, and metabolism 
of tissues and organs during the intrauterine period [16, 
18, 118]. IGF1 regulates cell proliferation and apoptosis, 
and glucose and lipid metabolism by binding to the IGF1 
receptor (IGF1R) [119]. Although IGF1 is expressed in 
almost all embryonic tissues [17], it is mainly produced 
in the liver during the fetal period. Hepatic IGF1 or 
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IGF1R knockout or mutation significantly reduces fetal 
birth weight and length [120–122]. Studies confirmed 
that blood IGF1 levels decreased in fetuses with IUGR 
in mammals, and these levels were significantly higher 
in IUGR offspring exhibiting “catch-up growth” than in 
those not exhibiting “catch-up growth” [123–125], which 
is related to adult metabolic diseases [2, 126]. A study in 
our laboratory also showed that the expression of liver 
and serum IGF1 in fetuses of rats exposed to ethanol 
during pregnancy was lower than that of controls [2], 
while they also increased significantly after birth, and the 
increased rate was higher than that of the controls, which 
may be one of the intrauterine programming mecha-
nisms of NAFLD [2].

GCs promote fetal maturation, while this process is 
theoretically accompanied by growth inhibition. Increas-
ing numbers of studies have shown that high levels of 
GCs inhibit the expression of IGF1 in various tissues 
and cells of human and sheep [19, 20]. A series of stud-
ies confirmed that PEE increases the level of serum 
corticosterone in fetal rats, but decreases the levels of 
serum and liver IGF1. After birth, the levels of corticos-
terone decrease, while those of IGF1 increase. After a 
high-fat diet, corticosterone levels in the offspring fur-
ther decrease, but IGF1 levels further increase and body 
weight shows “catch-up growth” [2]. Similarly, when fetal 
blood corticosterone levels in male IUGR offspring rats 
exposed to ethanol prenatally increase, the expression of 
IGF1 and downstream steroid synthase enzymes in the 
adrenal gland decreases. After birth, when corticoste-
rone levels decrease in the offspring of rats, the expres-
sion of adrenal IGF1 and downstream steroid synthase 
enzymes shows a compensatory increase [37]. This nega-
tive change suggests that there may be an axial relation-
ship between GC and IGF1 in multiple tissues (such as 
the liver and adrenal gland) (Fig. 1), which may be a phys-
iological axis of fetal development and maturity, mediat-
ing adaptive changes and compensatory effects under the 
adverse intrauterine environment.

To confirm how maternal GC overexposure mediates 
programming alterations of the GC-IGF1 axis in fetuses, 
researchers systematically observed changes in corticos-
terone levels, the adrenal GC activation system, IGF1 
signaling, and steroid synthesis before and after birth in 
IUGR rats induced by PEE in a rat model [37]. The results 
showed that maternal-derived GCs increased the expres-
sion of 11β-HSD1; decreased the expression of 11β-
HSD2; increased the expression of MR, GR, and C/EBPα; 
and inhibited C/EBPβ and IGF1 signaling in fetal adre-
nal glands. Moreover, endogenous corticosterone con-
tent and the expression of corticosteroid synthase system 
decreased in the offspring exposed prenatally to ethanol. 
In the early postnatal period, these offspring showed 
low basal activity of the HPA axis and suppression of the 
adrenal GC activation system, but enhanced IGF1 signal-
ing; after a postnatal high-fat diet, the HPA axis showed 
stress hypersensitivity, accompanied by local GC-IGF1 
axis-mediated changes in organs and tissues (such as the 
adrenal gland and liver) [2, 64, 127]. This suggests that 
GC-IGF1-axis programming plays an important role in 
maintaining activity of the HPA axis and regulating organ 
and tissue functions before and after birth.

Epigenetic modifications in intrauterine 
programing and genetic toxicity induced by PEE
Epigenetics refers to heritable regulation of gene expres-
sion that does not involve gene sequence changes and is 
a reflection of environmental stimuli on genetic factors. 
Examples include DNA methylation, histone modifica-
tion, and non-coding RNAs [128, 129]. It is believed that 
epigenetic changes are involved in the intrauterine origin 
of adult-onset diseases and are responsible for the con-
tinuation of fetal programming that is induced by adverse 
intrauterine environments into the postnatal period and 
even the next generation of offspring [79]. Studies have 
suggested that PEE induces epigenetic changes in vari-
ous organs and cells (Table 2) [130, 131]. As early as the 
1990s, Garro et al. found that acute ethanol (3 g/kg twice 
a day) exposure from the ninth to the eleventh day of 

Fig. 1 GC-IGF1 axis mediates programming changes in the offspring exposed prenatally to ethanol. HPA, hypothalamic-pituitary-adrenal; GCs, glucocor-
ticoids; IGF1, insulin like growth factor 1; IUGR, intrauterine growth retardation
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gestation caused extensive DNA hypomethylation in fetal 
mouse [132]. Recently, News et al. reported that pregnant 
mouse exposure to alcohol (2  g/kg) on embryonic 18.5 
could result in incorporation of alcohol into gestating 
fetal brains and contribute to rapid histone acetylation in 
the brain in part by direct deposition of alcohol-derived 
acetyl groups onto histones in an ACSS2-dependent 
manner [133]. Based on the whole embryo culture tech-
nique, Liu et al. also found that alcohol exposure (88 mM) 
during mouse embryonic neurodevelopment induced 

alterations in the DNA methylation of the fetal brain, 
mainly occurring on chromosomes 7, 10, and X, which 
further caused delayed closure of the neural tube [134].

In addition, PEE in mice can alter acetylation of 
key genes and the expression of non-coding RNAs 
(lncRNA1354, miR-467b-5p, and miR-302c) in the hip-
pocampus, liver and sperm cells of offspring to affect 
the development of tissues and organs in adults (post-
natal day 87 or 70) [135, 136]. Moisiadis and Matthews 
reviewed multiple publications and found that excessive 

Table 2 Effects of PEE on epigenetic modifications of genes in multiple tissues
Species Periods Dose Tissue Genes Epigenetics Outcomes Generations Reference
Human

20 to 70.5 weeks 
postconception

– Brain – Decreases in 
5mC, H3K4me3, 
H3K9ac, H3K27ac, 
H4K12ac, and 
H4K16ac

Stillbirth F1  [140]

gestation 205 ± 32.8 g/day Cerebellum TET1↓, GABRD↓ DNA 
hypermethylation

Regulating 
cerebellar 
pathophysiology

F1  [141]

Long-Evans Rats
GD1–GD22 3.5 or 4.5 g/kg Hippocampus Dnmt1↑, 

Dnmt3a↑, 
MeCP2↑

DNA 
hypermethylation

Teratogen-
esis in the 
hippocampus

F1  [130, 142]

Wistar 
Rats

GD9–GD20 4.0 g/kg Liver IGF1
P450scc

Low H3K9ac Metabolic 
abnormalities

F1, F2  [127]

Adrenal glands Adrenal corticos-
terone synthesis 
dysfunction

F1, F2  [143]

Mice
GD9–GD11 3.0 g/kg Individual fetus Throughout 

the genome
DNA 
hypomethylation

Developmental 
abnormalities

F1  [132]

GD1.5–2.5/6.5 2.9 g/kg Embryos and 
placentae

H19/ CTCF1 DNA 
hypomethylation

Growth 
retardation

F1  [144]

GD10–GD18 0.5 g/kg Tail/liver/
tibialis anterior 
muscle/ sperm 
cell

H19 DNA 
hypomethylation

Decreased 
spermatogenesis

F1, F2  [137]

GD8.25 88 mM Embryo Nlgn3, Elavl2, 
Sox21, Sim1

Hypomethylation Abnormal fetal 
development

F1  [134]

Cyp4f13 Hypermethylation

GD12.5 for 5 
days in vitro

13, 26, 70 mM Neurosphere 
stem cell

Throughout 
the genome

H3K4/H3K27 
Hypermethylation

Developmental 
abnormalities

F1  [145]

H3K9ac

lncRNA1354↓ ncRNA

GD0–GD8.5 10% for 2 ml Hippocampus VGluT2↑,
miR-467b-5p↓

Hypomethylation
ncRNA

Hippocampal 
dysfunction

F1  [135]

GD14–16/GD16 2.5 g/kg Brain miR-302c↑ ncRNA FAS F1  [136]

GD18.5 2.0 g/kg Hippocampus Fstl1, Cep152, 
Uimc1 and 
so on

Histone 
acetylation

- F0, F1  [133]

GD, gestational day; GABRD, δ subunit GABAA receptor; Dnmt1, DNA methyltransferase 1; Dnmt3a, DNA methyltransferase 3α; MeCP2, methyl-CpG binding protein 
2; H19, H19 imprinted maternally expressed transcript; Nlgn3, neuroligin-3; Elavl2, ELAV-like RNA binding protein 2; Sim1, SIM BHLH transcription factor 1; Cyp4f13, 
cytochrome P450 family 4 subfamily f polypeptide 13; VGluT2, vesicular glutamate transporter 2; IGF1, insulin like growth factor 1; P450scc, cytochrome P450 family 
11 subfamily A member 1; FAS, fetal alcohol syndrome
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maternal GCs in fetuses can induce universal DNA meth-
ylation, histone acetylation, and miRNA expression, 
which might participate in fetal programing and inter-
generational inheritance of fetal-derived neurological, 
cardiovascular and metabolic diseases [79]. Moreover, 
studies from our group indicated that PEE decreased 
H3K9 and H3K14 histone acetylation within the IGF1 
promoter and increased IGF1 gene expression in mul-
tiple fetal organs of rats (e.g., the liver and bones), trig-
gering altered GC-IGF1 axis programming (high GC and 
low IGF1 in intrauterine; low GC and high IGF1 after 
birth); these epigenetic changes were inherited by the 
F2 generation [127]. Stouder et al. also found that PEE 
in mice caused hypomethylation of the imprinted gene 
H19 in the somatic and spermatogonial cells of offspring, 
which was transferred to F2 generation [137]. These epi-
genetic changes in imprinted genes and the GC-IGF1 
axis partly explain the intrauterine origin, long-term 
effect and multigenerational inheritance of develop-
mental toxicity in offspring induced by PEE [136]. PEE 
can also lead to expression and promoter methylation 
changes in common imprinted genes such as IGF2 [44, 
138, 139]. However, it mediates developmental toxic-
ity and multigenerational inheritance effects in PEE off-
spring and whether there are other mechanisms involved 
in PEE-induced multigenerational inheritance needs to 
be further studied.

“Dual programing” and “two strikes” mechanisms 
mediate multiple fetal-originated Diseases caused 
by PEE
“Thrifty phenotypes” are fetal adaptive changes, along 
with nutrition and energy redistribution, which main-
tain the normal development and function of crucial 
organs when fetuses were exposed to adverse environ-
ments during pregnancy. However, such individuals 
become susceptible to diseases in adulthood [146]. Thus, 
we hold that when a mother is exposed to ethanol dur-
ing pregnancy, on the one hand, ethanol directly enters 
the circulation of the fetus to injure fetal tissues; on the 
other hand, under conditions of high maternal GCs, the 
expression of 11β-HSD2 and P-gp decreases, and the 
placental GC barrier opens. Then, the maternal-derived 
GCs injure fetal tissues and modulate IGF1 signaling in 
various fetal organs and tissues to trigger the redistribu-
tion of nutrition and energy to protect the development 
of crucial organs (such as liver and brain), while attenuat-
ing the development of non-critical organs (such as bone 
and cartilage) to maintain fetal survival. This makes the 
fetus “thrifty.“

After birth, with the withdrawal of maternal-derived 
GCs and low GC expression in the offspring themselves, 
liver IGF1 expression continues to increase [37]. There-
fore, the levels of liver and serum IGF1 in the offspring 

exposed prenatally to ethanol were significantly higher 
than those in the control group for a long time after 
birth, along with notable postnatal “catch-up growth” 
[2], but the blood levels of growth hormone (GH) were 
consistently lower (data unpublished). In other words, 
the excessive increase in hepatic IGF1 expression medi-
ated by GCs is responsible for the “catch-up growth” of 
IUGR offspring, rather than the traditional GH-IGF1 
axis. Interestingly, although GC-IGF1 axis programming 
(high GC and low IGF1 in intrauterine; low GC and high 
IGF1 after birth) was altered in IUGR offspring subjected 
to PEE, the change in expression of genes involving liver 
glycolipid metabolism was not altered. Based on these 
findings, we have proposed that this process be defined 
as the “one programing” where the functional changes 
in various organs are caused by GCs under PEE and 
continue to adulthood. Meanwhile, the programming 
changes in multiple organ functions mediated by the GC-
IGF1 axis were defined as “another programing,“ which 
mainly reflects the pre- and postnatal adaptive and com-
pensatory changes in the multi-organ functions of off-
spring exposed to ethanol during pregnancy.

The HPA axis showed low basal activity and hypersen-
sitivity to chronic stress in IUGR offspring induced by 
PEE, as well as the GC-dependent phenotype of glucose 
and lipid metabolism [41, 64]. Those findings indicated 
that the excessive maternal-derived GCs induced by PEE 
and ethanol itself caused the “first strike” to the fetuses, 
which disrupted fetal development of organs and fur-
ther induced adaptive alterations. Outside of the adverse 
intrauterine environment and under conditions of ade-
quate postnatal nutrition, the offspring demonstrated 
“catch-up growth” through redistribution of nutrients 
and energy to compensate for the organ dysplasia. How-
ever, it was confirmed by the rat and zebrafish embryo 
models that those changes might disturb fetal-originated 
metabolic programing and exacerbate the abnormal mor-
phology of tissues and organs and dysfunction of glucose 
and lipid metabolism to exhaust the metabolic potential 
of the offspring, thus increasing susceptibility to meta-
bolic diseases [2, 126, 147, 148]. When the offspring again 
suffered from adverse factors postnatally, such as high-
fat diet or chronic stress [41] (these were defined as the 
“second strike”), various metabolic diseases developed. 
Therefore, “dual programing” (including the “one pro-
graming” and “another programing”) and “two strikes” 
(including the “first strike” and “second strike”) induced 
by PEE mediate the dysplasia of multiple organs and sus-
ceptibility to various diseases in the offspring.
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Sex-based differences and mechanism of 
developmental toxicity induced by PEE
Although the developmental toxicity of ethanol has been 
reported in both female and male animals and the high 
sensitivity of the HPA axis is very consistent between 
sexes, numerous studies still suggest that there are sex-
based differences in severity and specific manifestations 
[61, 62].

Sex-based differences caused by placental barrier
Studies have shown that PEE inhibits the expression 
and activity of 11β-HSD2 and P-gp more significantly 
in female placentas than males [149]. The suppressed 
expression and activity of 11β-HSD2 are related to the 
higher 11β-HSD2 DNA methylation level in female rat 
placenta [150]. When Sprague Dawley rats were exposed 
to ethanol in the middle and late stages of pregnancy, the 
expression of 11β-HSD2 was decreased in female pla-
centa and increased in male placenta [149]. The differ-
ence in PEE between male and female placentas makes it 
easier for maternal-derived GCs to enter female fetuses, 
resulting in sex-based differences in developmental tox-
icity. Furthermore, high maternal cortisol levels have 
been reported to induce GC resistance in male fetuses, 
while female fetuses remain sensitive [151]. In addition, 
the GR gene is mainly composed of five subtypes: GRα, 
GRβ, GRγ, GRA, and GRP [152, 153]. GRα has the stron-
gest activation effect on target genes; GRA, GRβ, and 
GRP cannot bind to GCs [154, 155]; GRP is related to GC 
resistance; and GRγ only has ~ 50% of the activation effect 
of GRα [156]. Human placental trophoblasts express 12 
GR protein subtypes, which makes the placenta uniquely 
sensitive to GCs [157]. Under the high intrauterine GC 
levels induced by PEE, the male placenta develops GC 
resistance by increasing GRβ, GRA, and GRP expression, 
while the female placenta increases GC sensitivity by 
decreasing expression of GRβ and enhancing the interac-
tion between GRαA, GRαD3, and GRαC [157]. Therefore, 
the differences in placental barrier and GC sensitivity are 
the reasons for the sex differences in developmental tox-
icity caused by PEE. However, whether the difference in 
GC sensitivity of other tissues and organs mediates the 
sex difference in developmental toxicity of PEE needs to 
be further studied.

Sex-based differences caused by neuroendocrine 
metabolic programming
The differences in HPA axis development and sensitiv-
ity might also be responsible for the sex differences in 
susceptibility to adult-onset diseases [158]. Studies from 
humans have demonstrated that the basal activity and 
sensitivity of the HPA axis are much higher in females 
than in males [159, 160]. In rats, as the basal serum cor-
ticosterone levels, corticosterone secretion rate, and 

reactivities to ACTH and corticosterone in female are 
higher than those in males in physiology, the HPA axis is 
also activated more easily in females than in males, espe-
cially during proestrus when serum estrogen reaches its 
peak, which further increases the activity and sensitivity 
of the HPA axis [161, 162]. Our previous studies observed 
that PEE increased blood corticosterone concentration 
in rat offspring, upregulated GR expression in the hip-
pocampus, decreased or did not change the expression 
of IGF1 and GAD67 from the intrauterine to postnatal 
phase in females, but increased the expression of GR, 
IGF1, and GAD67 in the male offspring hippocampus 
prenatally and in adulthood [102, 109]. Additional stud-
ies from both mice and rats indicated that PEE disrupted 
development of the hypothalamic-pituitary-gonadal 
(HPG) axis and delayed its maturation [163, 164], which 
may also be one of the reasons for sex differences. PEE 
caused postponed adolescence, abnormal vaginal devel-
opment, abnormal estrogen synthesis and secretion, and 
sexual behavior changes in female animals [1, 165–167]; 
however, abnormal testicular development (including a 
decreased number of interstitial glands), vesicles in the 
seminiferous tubules, suppressed testosterone synthesis 
and secretion, hyposensitivity to luteinizing hormone 
(LH), feminization, hyposensitivity of the HPG axis and 
sexual debility were observed in the male offspring of rats 
[7, 168–172].

Furthermore, the HPG axis and HPA axis can mutu-
ally regulate each other’s functions at various tissue levels 
[97]. For instance, estradiol can promote ACTH release 
during stress, thereby increasing GC levels, while pro-
gesterone competes with estradiol to inhibit HPA axis 
activity; only when progesterone is at extremely low 
levels does the regulatory effect of estrogen on the HPA 
axis become evident [161, 162]. Testosterone can inhibit 
CRH mRNA levels and reduce the body’s responsive-
ness to stress [162, 173]. Moreover, the CRH gene pro-
moter region contains estrogen and androgen response 
elements, and estrogen can promote CRH transcrip-
tion in the hypothalamus, while androgens inhibit CRH 
transcription; therefore, testosterone can reduce corti-
costerone production, while estrogen has the opposite 
effect [97, 162, 173]. This may be one of the reasons why 
females are more sensitive to stress compared to males 
and why the basal activity and sensitivity of the HPA 
axis in female offspring induced by PEE are higher than 
in males [159, 160]. In addition, an increase in GC levels 
inhibited the activity of 17β-hydroxysteroid dehydroge-
nase (an important enzyme in testosterone synthesis) in 
the testes, leading to a reduction in serum testosterone 
levels in males [174], which can also inhibit the release 
of gonadotropin-releasing hormone (GnRH) from the 
hypothalamus and interfere with the release of follicle-
stimulating hormone (FSH) and LH induced by GnRH, 
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thereby reducing estrogen levels [175]. IGF1 is also 
important for the development of the HPG axis, includ-
ing testis and ovaries [175–177]. Studies in our lab also 
found that PEE caused elevated blood corticosterone lev-
els and decreased expression of IGF1 in the liver, testes 
and ovaries of the fetal rats [2, 37, 49], which resulted 
in ovarian and testicular dysplasia, therefore decreasing 
estrogen and testosterone levels in female and male off-
spring, respectively [48, 49]. In summary, all HPA, HPG 
and GC-IGF1 axes may be involved in the sex difference 
of developmental toxicity caused by PEE.

Summary and prospects
The mechanism of dysplasia of fetal tissues and organs 
and susceptibility to fetal-originated diseases in offspring 
caused by PEE is not only related to the direct actions of 
ethanol or its metabolites, but also related to the fetal 
neuroendocrine metabolic programming changes (HPA 
and GC-IGF1 axis programming). The “dual program-
ing” and “two strikes” mechanisms induced by the direct 
effects of ethanol and neuroendocrine programming lead 
to the occurrence of various metabolic diseases in adult 
offspring (Fig. 2). Epigenetic modifications, placental bar-
rier and neuroendocrine metabolic programming and 

HPG axis participated in sex-based differences and inter-
generational inheritance induced by PEE, but some key 
points of these are still absolutely unclear.

Additionally, there are other common neuroendocrine 
axes (systems) with important roles in the human includ-
ing the hypothalamic pituitary thyroid axis (HPT) and 
renin angiotensin system (RAS) except for HPA, GC-
IGF1, and HPG axes. Hannigan and Cudd et al. showed 
that PEE led to a decrease in triiodothyronine (T3) and 
T4 levels in Long-Evans rats and goat offspring, both pre-
natally and after birth, while having no significant effect 
on free T4 [178, 179]. Wilcoxon et al. also indicated that 
PEE could result in permanent programming changes 
in the HPT axis in offspring rats and behavioral and 
cognitive dysfunction in offspring rats, and decreased 
expression of GAP-43 and GR in hippocampus, while 
supplementing with T4 can reverse these changes [180, 
181]. Moreover, studies by Fidalgo and us also suggested 
that PEE inhibited the binding of angiotensin (Ang) IV 
to Ang II type 1α receptor (AT1R), increased the expres-
sion of angiotensin converting enzyme (ACE), Ang II, 
and AT1R in the serum and kidney, while decreasing the 
expression of ACE2, AT2R, and Mas receptor (MasR), 
thereby eliminating the memory consolidation effect of 

Fig. 2 The intrauterine programing mechanism of adult metabolic diseases induced by PEE. GC, glucocorticoid; IGF1, insulin like growth factor 1; IUGR, 
intrauterine growth retardation; 11β-HSD2, 11β-hydroxysteroid dehydrogenase 2; P-gp, P-glycoprotein; HPA axis, hypothalamic-pituitary-adrenal axis
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exogenous Ang IV on male offspring aged 3–6 months, 
and causing kidney and bone dysplasia, as well as adult 
(24 weeks after birth) nephrotic syndrome and osteopo-
rosis [182–184]. All of these indicate that PEE may also 
lead to changes in other neuroendocrine axes such as 
HPT and RAS. However, current related studies are still 
limited, mostly at the level of animals and observational 
studies, lacking in-depth programming mechanisms and 
epidemiological investigations. There have also been no 
reports on whether maternal glucocorticoid overexpo-
sure caused by PEE is involved in changes in the HPT 
axis and RAS system. At the same time, due to differ-
ences in exposure time and dose, there are still many 
inconsistencies in the existing literature [52]. Therefore, 
more systematic research is urgently needed.

Finally, with accumulating research on fetal-originated 
diseases, translational medicine is continuing to bring 
basic research to clinical practice or clinical applications. 
Though avoiding ethanol exposure during pregnancy 
could be the best option, in cases where exposure has 
already occurred, based on the temporal characteristics 
of ethanol-induced developmental toxicity, sex differ-
ences, epigenetic programming and “dual programing” 
and “two strikes” mechanisms, interventions of ethanol 
exposure during early pregnancy primarily should focus 
on fetal structural abnormalities and abnormal preg-
nancy outcomes, while ethanol exposure during mid to 
late pregnancy primarily should aim to prevent long-term 
effects and increased susceptibility to multiple diseases in 
adult; moreover, specific interventions can be targeted 
towards male or female offspring based on the reasons 
for sex differences, respectively, while epigenetics may 
serve as diagnostic and warning markers or intervention 
targets; meanwhile, voiding a second strike after birth is 
also one of the effective strategies to prevent fetal-origi-
nated diseases caused by PEE. However, due to the some 
unclear molecular mechanism of the developmental 
toxicity and susceptibility to various diseases caused by 
PEE, the established targets at present are greatly limited. 
Therefore, based on neuroendocrine metabolic program-
ming, the primary and secondary prevention of birth 
defects induced by prenatal adverse environments (e.g., 
ethanol exposure) needs to be further studied.
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