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Abstract 

Background The genomes of present‑day non‑Africans are composed of 1–3% of Neandertal‑derived DNA as a con‑
sequence of admixture events between Neandertals and anatomically modern humans about 50–60 thousand years 
ago. Neandertal‑introgressed single nucleotide polymorphisms (aSNPs) have been associated with modern human 
disease‑related traits, which are risk factors for pancreatic ductal adenocarcinoma (PDAC), such as obesity, type 2 
diabetes, and inflammation. In this study, we aimed at investigating the role of aSNPs in PDAC in three Eurasian 
populations.

Results The high‑coverage Vindija Neandertal genome was used to select aSNPs in non‑African populations 
from 1000 Genomes project phase 3 data. Then, the association between aSNPs and PDAC risk was tested indepen‑
dently in Europeans and East Asians, using existing GWAS data on more than 200 000 individuals. We did not find 
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any significant associations between aSNPs and PDAC in samples of European descent, whereas, in East Asians, we 
observed that the Chr10p12.1‑rs117585753‑T allele (MAF = 10%) increased the risk to develop PDAC (OR = 1.35, 95%CI 
1.19–1.54, P = 3.59 ×  10–6), with a P‑value close to a threshold that takes into account multiple testing.

Conclusions Our results show only a minimal contribution of Neandertal SNPs to PDAC risk.

Keywords Neandertal, Pancreatic cancer, Association study, Introgression, Eurasians, Admixture

Introduction
By comparing the genome sequences of Neandertal and 
modern genomes it has been shown that ~ 1–3% of the 
genomes of present-day non-Africans are of Neandertal 
ancestry [1–3] with 8–20% higher levels of Neandertal 
ancestry in East Asians compared to Europeans [4–6]. 
Through phenotypic information from genome-wide 
association studies it has been shown that introgressed 
Neandertal DNA still significantly influences the pheno-
typic variability of anatomically modern humans (AMHs) 
today. Neandertal-introgressed Single Nucleotide Poly-
morphisms (aSNPs) have for example been associated 
with several human traits, such as the genetic susceptibil-
ity of type 2 diabetes (T2D), obesity, age of menopause, 
neurological traits, morning preference, skin and hair 
morphology, immune response, and inflammation [7–
17]. Among these traits are several factors, such as over-
weight, obesity, T2D, deregulation of the immune system, 
and chronic inflammation that play a key role in pancre-
atic ductal adenocarcinoma (PDAC) onset and progres-
sion [18–21].

Alongside a small number of environmental risk fac-
tors [22–24], PDAC susceptibility has a strong genetic 
component. Rare high penetrance variants involved in 
hereditary syndromes (reviewed in Gentiluomo et  al.) 
and frequent low and moderate penetrance variants, dis-
covered through candidate gene and genome-wide asso-
ciation studies (GWAS), have been identified as playing a 
role in PDAC onset [25–39]. However, the common risk 
loci discovered so far explain only a small proportion of 
the overall heritability of the disease [40]. Furthermore, 
PDAC is a late onset disease [29, 41, 42], thus loci asso-
ciated with PDAC susceptibility tend to persist in the 
AMH gene pool, eluding purifying selection.

Considering that aSNPs are associated with several 
PDAC risk factors and that the genetic contribution to 
PDAC etiology still needs to be elucidated, we aimed at 
investigating the Neandertal legacy of PDAC genetic risk. 
We analysed PDAC GWAS cohorts from different Eura-
sian populations for significant associations with aSNPs 
to study the role of Neandertal admixture and PDAC 
risk in different ancestry groups. This study is the first 
attempt to investigate the role of archaic admixture on 
PDAC development.

Results
In this study, 389 144 aSNPs were identified among the 
non-African populations of the 1000 Genomes pro-
ject [43]. The association between aSNPs and the risk of 
developing PDAC was tested in three ancestry groups: 
non-Finnish Europeans, Finns, and East Asians.

For non-Finnish Europeans, 161 283 aSNPs were avail-
able to be analysed in the discovery phase, using the 
genotypes of PanScan + PanC4 studies. Considering a 
P < 0.05, 263 aSNPs resulted associated with PDAC risk in 
the combined PanScan + PanC4 dataset. All 263 of these 
aSNPs also passed the P < 0.05 threshold when only Pan-
Scan or PanC4 were considered separately. Among them, 
212 showed residual LD  (r2 > 0.5). After pruning, 51 inde-
pendent aSNPs associations spanning across 51 loci were 
observed (Fig. 1, Additional File 1). None of the 51 aSNPs 
remained associated with PDAC after correction for 
multiple testing  (pj = 2.30 ×  10–6). The SNP with the low-
est P-value was Chr2p14-rs12998719, (OR = 1.11, 95%CI 
1.05–1.16, P = 5.51 ×  10–5) (Table  1). This variant has 
been already reported to be associated with PDAC risk 
[32] and was genotyped in the context of the PANDoRA 
consortium (replication phase). The results of the replica-
tion phase did not show a statistically significant associa-
tion (OR = 1.46, 95%CI 0.95–1.15, P = 0.38) (Table 1).

In FinnGen, 251 090 aSNPs were found, and after LD-
pruning  (r2 > 0.5), 1154 independent aSNPs with a P < 0.05 
were observed (Fig. 1). The aSNP with the lowest P-value 
in FinnGen was Chr3p24.3-rs113955626 (OR = 1.35, 
95%CI 1.17–1.55, P = 4.79 ×  10–5) (Table 1); this aSNP did 
not reach the Bonferroni adjusted significance threshold 
 (pj = 2.30 ×  10–6).

In the JaPAN dataset, which includes data of the meta-
analysis of three GWAS conducted on individuals of 
Asian descent, 158 393 aSNPs were analysed. The asso-
ciation analysis showed 656 independent aSNPs with a 
P < 0.05 in all the three GWASs (Fig. 1). The best candi-
date was Chr10p12.1-rs117585753 (OR = 1.35, 95%CI 
1.19–1.54, P = 3.59 ×  10–6), whose P-value was very close 
to the Bonferroni-adjusted threshold  (pj = 2.28 ×  10–6) 
(Table 1).
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Discussion
We tested the effects of Neandertal introgression on 
PDAC susceptibility in three ancestry groups. In non-
Finnish Europeans and Finns, no novel significant asso-
ciations between aSNPs and PDAC were observed.

In JaPAN, we found that the T allele of Chr10p12.1-
rs117585753 increased the risk to develop PDAC 
(P = 3.59 ×  10–6). This association was not statistically 
significant when considering multiple testing. How-
ever, it is very close to the Bonferroni corrected thresh-
old  (pj = 2.28 ×  10–6). The functional implications of this 
aSNP have not been clarified yet: according to GWAS 
catalog, it is not associated with any complex human 
trait.

Interestingly, the T allele of Chr10p12.1-rs117585753 
is present in EAS (MAF = 10%), whereas it is almost 
absent in the other populations represented in 1000 
Genomes project (e.g., MAF < 0.01 in Europeans from 
1000 Genomes project). Since Chr10p12.1-rs117585753 
is polymorphic only in Asians, it is possible that the role 
of this aSNP in complex traits has not been elucidated yet 
because most of the association studies have been con-
ducted in cohorts with participants of European descent 
[46]. The lower number of studies with Asian individu-
als implies that the associations between SNPs, which are 

rare in Europeans but common in Asians, still need fur-
ther investigation to be understood entirely.

Chr10p12.1-rs117585753 lies in an intron of the pro-
tein-coding PRTFDC1 gene, in which, according to the 
GWAS catalog, there are SNPs associated with blood cell 
count [47–49]. Several white and red blood cell count 
parameters have been used to predict immune response 
and inflammation in various diseases, including PDAC 
[50, 51]. One SNP in PRTFDC1 (Chr10p12.1-rs7905553) 
is in weak LD (r2 = 0.14, D’ = 0.96) with Chr10p12.1-
rs117585753 in EAS, and according to GWAS catalog it is 
associated with red blood cell distribution width (RDW) 
[52], which is a parameter of erythrocyte variation. RDW 
has been proposed as a biomarker of the inflammatory 
state that could predict progression/prognosis in PDAC 
[53], suggesting a potential contribution of the PRTFDC1 
genomic region and Chr10p12.1-rs117585753 in PDAC 
and immunity.

Several Neandertal-derived haplotypes involved in 
immunity have been reported to be under selection 
after Neandertal-AMH introgression. In fact, the posi-
tive selection of aSNPs that lead to adaptation (adaptive 
introgression) has been observed to be driven by the 
immune response to pathogens [8, 9, 54–57].

Possible limitations of our approach are represented 
by the fact that we could have underestimated the role 

Fig. 1 aSNPs filtering and analysis workflow for each ancestry group. The figure displays aSNPs analysis workflow for non‑Finnish Europeans, 
Finns, and East Asians. The 389 144 aSNPs identified in all non‑African populations from 1000 Genomes project phase 3, were filtered and analysed 
for each ancestry group. aSNP Neandertal introgressed SNP. 1aSNPs that showed an association P‑value < 0.05 in PanScan, PanC4 and in the 
two datasets combined. aSNPs with a P < 0.05 in PanScan (7850), PanC4 (8141), and the combined datasets (8718). 2aSNPs with a P‑value < 0.05 
and an identical direction of the effect in all the three GWASs included in JaPAN
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of rare variants (MAF < 1%) because we did not have 
enough statistical power to detect associations between 
rare aSNPs and PDAC, although we used the larg-
est PDAC datasets currently available, which included 
more than 200 000 individuals of three different ances-
tries. An additional potential limitation of this work is 
that 93 695 out of 389 144 aSNPs identified in Eura-
sian genomes could not be found in PanScan + PanC4, 
FinnGen, and JaPAN. Therefore, the role of these aSNPs 
in PDAC susceptibility was not explored. In future 
analyses, larger reference panels for imputation could 
be used to maximize the investigated Neandertal-
derived genetic variability.

Conclusions
In conclusion, we observed that the Neandertal 
introgressed DNA does not influence PDAC sus-
ceptibility in populations of European descent. Inter-
estingly, we observed a potential association between 
Chr10p12.1-rs117585753-T and an increased risk of 
developing PDAC in populations of Asian descent, 
although not formally significant after correction for 
multiple testing. This aSNP is polymorphic only in East 

Asians and is situated in a genomic region involved in 
immunity. Further investigations are needed to elucidate 
the evolutionary processes that lead to these aSNPs in 
the AMH gene pool and the role of aSNPs in PDAC risk, 
and more broadly, to explore the Neandertal legacy in the 
susceptibility to other cancer types.

Methods
Neandertal SNPs identification
The method to select aSNPs was previously described 
[12]. Briefly, to define a potential introgressed allele, we 
used four criteria that needed to be fulfilled: (a) the allele 
is shared between the Vindija Neandertal [5] and at least 
one non-African population from 1000 Genomes project 
phase 3 [43]; (b) the allele is not present in Yoruba from 
sub-Saharan Africa; (c) the allele is carried in homozy-
gous state by Vindija Neandertal; (d) based on the hap-
lotype length, the allele is more likely derived from 
Neandertal-AMH admixture than incomplete lineage 
sorting (ILS). To apply the fourth criterion, an approach, 
that was previously described by Huerta-Sánchez et  al., 
and Dannemann et  al. was used [54, 58]. Briefly, it 
allows the identification of putative Neandertal intro-
gressed regions in all non-African 1000 Genomes project 

Table 1 Candidate aSNPs for each ancestry group

Panel A shows the summary statistics of aSNPs with the lowest association P-value, panel B shows the minor allele frequency of SNPs with the lowest P-value of 
associations across several datasets

aSNP Neandertal introgressed SNP; M major allele; m, minor allele; MAF minor allele frequency; OR Odds Ratio; 95%C.I. 95% Confidence Interval; PRTFDC1 
phosphoribosyl transferase domain containing 1; 1000G 1000 Genomes project phase 3 [43]; gnomAD Genome Aggregation Database [44]; HGDP Human Genome 
Diversity Project [45] EUR Europeans; FIN Finns; EAS East Asians
a Gene in which aSNP lies
b MAF of the SNP of interest in the analysed datasets. Since allele frequencies are not freely available in JaPAN dataset, the MAF in East Asians from 1000G is reported
c PanScan + PanC4 (discovery phase), PANDoRA (replication phase)
d In HGDP, SNP frequency in Finns is not available. Frequency in all European populations is displayed

Panel A. Association studies results

Population aSNP Position 
(GRCh37)

Alleles (M/m) Genea MAFb OR (95%C.I.) P

PanS‑
can +  PanC4c

rs12998719 2:67583252 G/A – 29% 1.11 (1.05–
1.16)

5.51 ×  10–5

PANDoRAc rs12998719 2:67583252 G/A – 28% 1.05 (0.95–
1.15)

0.38

FinnGen rs113955626 3:23107748 C/T – 7% 1.35 (1.17–
1.55)

4.79 ×  10–5

JaPAN rs117585753 10:25190572 C/T PRTFDC1 10% 1.35 (1.19–
1.54)

3.59 ×  10–6

Panel B. Top SNP population-based frequency

Population aSNP Position (GRCh37) Alleles (M/m) 1000G MAF gnomAD MAF HGDPd

EUR FIN EAS (%) EUR (%) FIN EAS (%) EUR (%) EAS

PanScan +  PanC4c rs12998719 2:67583252 G/A 27% 30% 43 36 29% 42 25 35%

FinnGen rs113955626 3:23107748 C/T 4% 4% 13 5 8% 14 8 18%

JaPAN rs117585753 10:25190572 C/T 8‰ 5‰ 10 1 3‰ 9 1 8%
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populations. Two recombination maps [59, 60] were used 
to calculate the expected ILS segments length based on 
the local recombination rate. Then, the probability that 
a segment length was consistent with ILS was computed 
and the resulting P-values were corrected through Ben-
jamini–Hochberg method. Haplotypes that showed an 
adjusted P-value < 0.05 were considered as introgressed 
from Neandertal. The aSNPs used in the following analy-
ses lay on one of these Neandertal-derived haplotypes.

All the analyses were based on human genome assem-
bly GRCh37, and only biallelic loci were considered, 
excluding indels.

Study populations
The association between aSNPs and PDAC risk was 
tested in three ancestry groups: non-Finnish Europeans, 
Finns and East Asians. A two-phase association study 
(discovery and replication) was performed to examine 
if aSNPs identified in non-Finnish Europeans affected 
PDAC susceptibility. On the other hand, a validation 
set was not available for Finns and East Asians, and the 
association between aSNPs and PDAC was tested by 
searching for aSNPs in FinnGen and JaPAN datasets, 
respectively (see below).

For non-Finnish European analyses, the discovery set 
included data of the Pancreatic Cancer Cohort Consor-
tium (PanScan) and the Pancreatic Cancer Case–Con-
trol Consortium (PanC4). The data were downloaded 
from the database of Genotypes and Phenotypes 
(dbGaP, https:// www. ncbi. nlm. nih. gov/ gap/). The dbGaP 
study accession numbers were: phs000206.v5.p3 and 
phs000648.v1.p1.; the project reference number was 
#12644. Details about data collection, genotyping meth-
ods and analyses are described in the original publica-
tions [26, 31, 32, 61].

Genotype data were imputed separately, for each data-
set, using the Michigan Imputation Server (https:// imput 
ation server. sph. umich. edu) [62] and the Haplotype Ref-
erence Consortium (HRC, V.r1.1) as reference panel 
[63]. Prior to the imputation, the following quality con-
trols were applied: genotypes missingness (call rate < 0.9), 
heterozygosity (> 3 SD from the mean), relatedness (PI_
HAT > 0.2), PCA outliers (using PCA), and Hardy–Wein-
berg equilibrium (P < 1 ×  10−6). After imputation, SNPs 
with low imputation quality (INFO score  r2 < 0.7) were 
excluded. Finally, the imputed datasets were merged. A 
total of 7 543 430 SNPs passed the quality controls on the 
autosomal genome, and 8738 PDAC cases and 7034 con-
trols were used in the analysis (Table 2).

The replication of aSNPs with a P-value of associa-
tion with PDAC risk lower than the Bonferroni-adjusted 
threshold (see below) was attempted in the Pancreatic 
Disease Research (PANDoRA) consortium [64, 65]. 
PANDoRA is a multicentric study on pancreatic cancer 
based mainly on European countries (Greece, Italy, Ger-
many, Netherlands, Denmark, Czech Republic, Hungary, 
Poland, Ukraine, Lithuania, UK). In addition, PAN-
DoRA includes a subgroup of Brazilian cases and con-
trols that were excluded from the validation set in this 
study because PanScan + PanC4 (discovery set) included 
only Caucasian samples, while Brazilians belong to dif-
ferent ancestries (unlike the other PANDoRA samples). 
Information on sex, and age (recruitment for controls 
and diagnosis for the cases) was collected for each par-
ticipant. The controls were enrolled among the general 
population, blood donors or hospitalised individuals 
not affected by cancer, chronic pancreatitis, or diabetes 
[64]. For this study, 4983 individuals (1894 PDAC cases 
and 3089 controls) from PANDoRA were included in the 
analysis (Table 2).

Table 2 Study population description for each ancestry group

The table shows the number of cases and controls in PanScan + PanC4, PANDoRA, FinnGen and JaPAN. Male and female count and median age of cases and controls 
are displayed for each study
a PanScan + PanC4 (discovery phase), PANDoRA (replication phase)
b Data for male count and age are displayed as minimum–maximum values of the three GWASs included in JaPAN

Data not available: “- “

Population Cases Controls Sex Median age (25–75% percentile) Total number 
of subjects

Male Female Cases Controls

non-Finnish Europeans

 PanScan +  PanC4a 8738 7034 54% 46% 65 (55–75) 65 (55–75) 15 772

  PANDoRAa 1894 3089 51% 49% 67 (59–73) 59 (49–67) 4983

Finns

 FinnGen 1249 259 583 – – – – 260 832

East Asians

  JaPANb 2039 32 592 49.3–62.6% – 62.7–66.3 43.6–56.3 34 631

https://www.ncbi.nlm.nih.gov/gap/
https://imputationserver.sph.umich.edu
https://imputationserver.sph.umich.edu
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Non-Finnish Europeans and Finns were analysed 
separately because PanScan + PanC4 and PANDoRA 
mainly include subjects with Central European ances-
try. We used the FinnGen Release 8 (R8) data that con-
sists of GWAS summary statistics of 1249 pancreatic 
cancer cases and 259 583 controls with Finnish ancestry 
(Table  2). Subjects affected by other cancer types were 
excluded from the controls (https:// FinnG en. gitbo ok. io/ 
docum entat ion/) [66].

To examine the association between aSNPs identified 
in East Asians and PDAC, we downloaded JaPAN con-
sortium dataset that consisted of summary statistics of 
a meta-analysis of three GWASs (JaPAN, National Can-
cer Center and BioBank Japan GWASs). Comprehensive 
information on genotyping and data analysis are given in 
the original publication [67]. Summary statistics for the 
GWAS analysis are available on the JaPAN consortium 
website (http:// www. aichi- med-u. ac. jp/ JaPAN/ curre nt_ 
initi atives- e. html) and include 34 631 individuals of East 
Asian origin (2039 PDAC cases and 32 592 controls) 
(Table 2).

Data and statistical analyses
For non-Finnish Europeans, the association between 
aSNPs and PDAC susceptibility was tested in the PanS-
can + PanC4 dataset using logistic regression analysis, 
adjusting for age, sex and the top eight principal compo-
nents (Fig. 2). To obtain a list of independent aSNPs, all 
aSNPs in linkage disequilibrium (LD;  r2 > 0.5) with each 
other were excluded, and in each LD block the aSNP with 
the lowest association P-value was selected. Then, all 
aSNPs showing an association lower than the threshold 
for statistical significance corrected for multiple testing 

in PanScan, PanC4 and in the combined datasets were 
selected for replication in PANDoRA.

The genomic DNA of the PANDoRA samples was 
extracted from circulating blood using the  QIamp® 96 
DNA  QIcube® HT Kit (Qiagen, Hilden, Germany). The 
genotyping was done using TaqMan RealTime PCR 
assays in 384-well plates. Each plate included cases and 
controls, duplicated samples for quality controls (QCs) 
and negative controls. The fluorescent signal detection 
was detected through a QuantStudioTM 5 Real-Time 
PCR system (Thermofisher, USA) and genotypes were 
called using the QuantStudio™ Design and Analysis Soft-
ware v1.5.1. Samples with a genotyping call rate lower 
than 75% were excluded from the analysis. Hardy–Wein-
berg equilibrium test was performed with the Pearson 
chi-square test. To test the association between aSNPs 
and PDAC risk in PANDoRA, a logistic regression 
adjusted for age, sex, and country of origin was used.

For Finns and East Asians, the analyses were car-
ried out in parallel, keeping separated the two ancestry 
groups. Considering that for FinnGen and JaPAN we 
used summary statistics, we looked at the P-value for 
association in these two datasets for the aSNPs selected 
for the two populations. Since JaPAN is a meta-analysis 
of three studies, along with P-value, the concordance of 
the direction of the effect between the three GWASs was 
considered.

P-value correction for multiple testing was performed 
using Bonferroni correction and considering the inde-
pendent (r2 < 0.8) aSNPs. The adjusted significance 
thresholds were: 0.05/19 623 = 2.55 ×  10–6 for PanS-
can + PanC4 and PANDoRA; 0.05/21 780 = 2.30 ×  10–6 for 
FinnGen; 0.05/21 965 = 2.28 ×  10–6 for JaPAN.

Fig. 2 Manhattan and Quantile–Quantile (Q‑Q) plots of PanScan + PanC4 association study results. The P‑values displayed in Manhattan (A) 
and Q‑Q plots (B) are calculated combining PanScan and PanC4 datasets. The plots were done using qqman R package (https:// cran.r‑ proje ct. 
org/ web/ packa ges/ qqman/ index. html) [68]. The inflation factors (l) did not indicate systematic inflation for PanScan (l = 1.02), PanC4 (l = 1.05), 
and combined datasets (l = 1.05). The inflation factors were computed using simtrait R package (https:// cran.r‑ proje ct. org/ web/ packa ges/ simtr ait/ 
index. html) [69]

https://FinnGen.gitbook.io/documentation/
https://FinnGen.gitbook.io/documentation/
http://www.aichi-med-u.ac.jp/JaPAN/current_initiatives-e.html
http://www.aichi-med-u.ac.jp/JaPAN/current_initiatives-e.html
https://cran.r-project.org/web/packages/qqman/index.html
https://cran.r-project.org/web/packages/qqman/index.html
https://cran.r-project.org/web/packages/simtrait/index.html)
https://cran.r-project.org/web/packages/simtrait/index.html)
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Abbreviations
95%C.I.  95% Confidence interval
AMH  Anatomically modern human
aSNP  Neandertal intogressed single nucleotide polymorphism
dbGaP  Database of genotypes and phenotypes
EAS  East Asians from 1000 genomes project phase 3
EUR  Europeans from 1000 genomes project phase 3
gnomAD  Genome aggregation database
GWAS  Genome‑wide association study
HGDP  Human genome diverity project
HRC  Haplotype Reference Consortium
ILS  Incomplete lineage sorting
JaPAN  Japan Pancreatic Cancer Research consortium
LD  Linkage disequilibrium
MAF  Minor allele frequency
OR  Odds ratio
PanC4  Pancreatic Cancer Case Control consortium
PANDoRA  Pancreatic Disease Research consortium
PanScan  Pancreatic Cancer Cohort consortium
PCA  Principal component analysis
PDAC  Pancreatic ductal adenocarcinoma
QC  Quality controls
Q‑Q plot  Quantile–quantile plot
RDW  Red blood cell distribution width
T2D  Type 2 diabetes
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