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Abstract

The human genome contains regions that cannot be adequately assembled or aligned using next generation short-
read sequencing technologies. More than 2500 genes are known contain such ‘dark’regions. In this study, we investi-
gate the negative consequences of dark regions on gene discovery across a range of disease and study types, show-
ing that dark regions are likely preventing researchers from identifying genetic variants relevant to human disease.
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Background

Genome-wide association studies (GWAS) have success-
fully identified regions of the genome associated with
human diseases, but have been less successful at deter-
mining the contributory variants involved. Similarly,
many genes have been identified as biologically relevant
candidates for disease (through linkage studies, gene
and protein expression studies, animal models, etc.), but
without corresponding support for risk variants from
genomic sequencing. Whether these genes are false posi-
tives, or this missing heritability is driven by something
else remains unexplained.

As understanding of the structure and sequence of
the human genome improved it has become apparent
that there are regions of the genome that are difficult, or
impossible, to assembled or aligned using next genera-
tion short-read sequencing (SRS) methods [1-3]. Ebbert
et al. described these regions as “dark regions” of the
genome (either “dark-by-depth’, with few mappable reads
or “dark-by-alignment’, caused by duplicated sequences
and multi-mapping reads) [4]. Estimates of how much
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of the genome is dark vary by definition of what con-
stitutes a dark region; study design; and the sequencing
technology employed. For standard whole genome SRS,
the proportion of the genome that is dark or difficult-to-
map is estimated to range between 84 and 145 Mb [1, 4],
with 748 to 2512 protein-coding genes reported as being
at least partially dark [2, 4]. The number of dark genes
implicated in human disease similarly varies by study and
the database of disease-genes used. Ebbert reported 76
disease-associated genes from the public HGMD data-
base (2012 version) as overlapping dark regions [4], while
Mandelker identified 464 medically relevant dark genes,
based on ACMG guidelines and ClinVar data (2012 ver-
sion) [2]. While these numbers may be under-estimates
due to the age of the databases used, it is clear that a non-
trivial proportion of the genome is dark and that this may
be an obstacle to the discovery of risk mutations relevant
to human disease.

Results and discussion

To date, no-one has looked at the potential impact of
dark regions on gene discovery, likely in part due to the
difficulties of investigating null-findings or the absence of
data. The aim of this analysis was to investigate whether
dark regions could affect our ability to identify disease-
relevant variants, both when fine-mapping genome-
wide significant GWAS loci and when performing whole
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exome (WES) or whole genome (WGS) sequencing
studies.

We investigated the overlap between a curated list of
dark regions and dark genes from Ebbert et al. [4], against
annotated GWAS loci, here-on referred to as Genomic
Risk Loci (GRL), for eight different diseases and complex
traits: autism spectrum disorders (ASD); schizophrenia
(SCZ); body mass index (BMI); bipolar disorder (BD);
major depressive disorder (MDD); cholesterol; amyo-
trophic lateral sclerosis (ALS); and Crohn’s disease. These
eight GWAS were taken from the FUMA public data-
base of GWAS studies and each GRL was annotated with
summary information for all genes in LD (R>0.6) with
the tagging SNP [5]. Across the eight studies, 33-73%
of GRLs contained dark regions (Table 1). The amount
of dark sequence within these regions varied from 92 bp
(ASD) to more than 1 Mb (SCZ and BMI). Furthermore,
7-20% of the genes at each locus were found to overlap
dark regions, with up to 2.5% of these genes having dark-
CDS regions (dark protein-coding regions).

While only a small percentage of GWAS genes are
affected by dark-CDS, it is not expected that all genes at
each GRL will play a role in disease aetiology, as dem-
onstrated by fine-mapping, pathway analysis and other
downstream analyses of GWAS data [6, 7]. To assess
their potential functional impact, the genes with dark
regions were investigated for enrichment for biologically
relevant gene ontology (GO) terms [8]. All eight sets of
dark GWAS genes were enriched for GO terms previ-
ously associated with their corresponding disease and
trait (Table 1, Additional file 1). In particular, the dark
genes from the SCZ, BMI and MDD GWAS studies (the
GWAS with the greatest number of GRL genes) returned
FDR-significant GO terms. For these three datasets, a
comparison of the dark GRL genes against the remaining
(not-dark) GRL genes further refined the biological rel-
evance of the GO terms identified (p-value < 0.05, but not
FDR-significant) (Additional file 1). In summary, GWAS
dark genes and dark-CDS genes are enriched for biologi-
cally relevant GO terms, suggesting there are biologically
relevant genes in regions of the genome significantly
associated with disease that are not fully accessible to
SRS technology. Therefore, fine-mapping studies may fail
because the pathogenic variants are in dark regions and
cannot be accessed.

To investigate the impact of dark regions on the dis-
covery of rare variant associations from WES studies we
looked at the overlap of dark regions with the protein-
coding regions of genes from the Schizophrenia Exome
Sequencing Meta-analysis (SCHEMA) consortium
and the Autism Exome Sequencing consortium (ASC).
Despite the size of the SCHEMA cohort (24,248 cases
and 97,322 controls), only ten genes were found by the
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authors to be significantly associated with SCZ [9]. Of
these ten, only TRIO has a partially dark-CDS (CDS 0.4%
dark). Extending the search space to include all genes
from SCHEMA with p-value<0.05 (928 genes), 222 had
partially dark gene bodies (including non-coding regions
and introns); 22 have partially dark-CDS, ten with>5%
dark-CDS. Of these ten, six have supporting evidence
from the literature of having a neuro-developmental or
psychiatric function (Additional file 1).

Of the 102 putative ASD-associated genes identified
by the ASC (FDR<0.1) [10], four have dark-CDS, with
COROIA and SHANK3 being more than 5% dark (Addi-
tional file 1). Of these 102 genes, 101 are annotated by
SFARI Gene 3.0 [11] as Score 1 (High Confidence ASD
gene), with one gene being Score 2 (Strong Candidate).
Across the full set of SFARI genes we found an enrich-
ment of dark regions in Score 2 and Syndromic (ASD
with co-morbid phenotypes) genes with ASC q-val-
ues > 0.3, suggesting that some candidate genes for ASD
may not perform well in genetic association studies due
to their gene bodies being partially dark to sequencing
(Additional file 1: Fig. S1).

Two examples of dark candidate disease genes from
SCHEMA and ASC are SHANK3 and C4B, shown in
Fig. 1. SHANKS is a top hit from ASC, nominally-associ-
ated in SCHEMA, and has also been implicated by com-
mon variant GWAS for schizophrenia [12]. As can be
seen in Fig. 1, the coding regions of SHANKS3 are 7.7%
dark and WES in particular is unable to identify genetic
variants from 5 different exons. Many studies have sup-
ported SHANK3’s role in both SCZ and ASD [13-16].
C4B was also found to be within the nominally-signif-
icant SCHEMA gene set and is a SFARI Score 2 gene.
Figure 1 shows that C4B is substantially dark (73% dark-
CDS), preventing the discovery of genetic variants across
most exons. Both C4B and its paralog C4A (also~74%
dark-CDS) have been suggested to play a role in SCZ [6,
17-19]. These examples support the theory that candi-
date disease genes overlapping dark regions may contain
rare variants that are not accessible to SRS technol-
ogy and thus are missed when calculating gene-disease
associations.

Ebbert et al. [4] showed that dark genes are involved
in many diseases including neuropsychiatric disorders.
We have confirmed this and given evidence of even
more neuro-psychiatric genes affected by dark regions.
As this analysis is based on a conservative number of
dark regions and dark genes (749 genes) we propose
that we have reported the lower- rather than upper-limit
of potential disease-associated genes affected by dark
regions. However, it should also be noted that the number
of dark regions, both within genes and intragenic regions,
vary dramatically depending on both the technology
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sequencing data

and genome build used. Longer read lengths (Illumina
250 bp) have up to 35% less dark regions than shorter
read lengths (Illumina 100 bp), as longer reads map more
uniquely than shorter reads [4]. GRCh38 appears to have
up to three-fold greater proportion of dark regions than
GRCh37 for all read lengths, possibly due to the inclusion
of alternative contigs and additional halpotypes from het-
erozygous regions, which increases the amount of non-
unique sequences from SRS in the GRCh38 + alternative
contigs reference assembly than the GRCh37assembly
[4]. Thus both read length and genome reference build
appear to be important factors for the proportion of dark
regions present in SRS WGS data.

This study makes use of publicly available GWAS data
from FUMA. Larger, better-powered GWAS have since
been performed for a number of these diseases, identify-
ing an even greater number of GRLs, each likely to also
contain dark regions overlapping putative risk genes.
Despite these limitations, we have shown that dark
regions overlap with genome-wide significant GWAS loci
across a range of traits and disorders, affecting as much
as 1.3 Mb of sequence under these peaks and that the

genes with dark regions are enriched for biologically rele-
vant GO terms, showing they are relevant to disease-risk.
Care must be taken when fine-mapping GWAS regions
as the causal variants may be located in regions that are
dark to SRS and will therefore be missed. A similar issue
can be seen when looking at rare variant association
studies. From our analysis, dark regions are likely to con-
tribute to missing heritability.

There needs to be greater awareness of the potential
effects of dark regions when using SRS to investigate
both common and rare genetic variants contributing to
disease. Genes of interest maybe partially inaccessible
to the technology being used, meaning that variants at
these locations cannot be identified using standard pro-
tocols. To overcome this, short-read WES and WGS data
can be re-analysed using alignment methods specifically
developed to correctly align ambiguous reads (such as
from camouflaged regions, repetitive sequences, inser-
tions and deletions) and successfully map non-unique
sequences which would normally be discarded [4, 20,
21]. Furthermore, long read sequencing technologies
(such as PacBio and ONT) have been shown to reduce
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the amount of dark gene-body regions by up to 77% [1,
3, 4]. The most recent reference assembly, T2T-CHM13,
was generated using a combination of PacBio HiFi and
Oxford Nanopore ultralong-read sequencing and repre-
sents the first complete genome [22], including the 8%
of the genome that has remained hidden since the first
human reference genome was published in 2000 [23].
LRS could therefore be used to re-investigate dark genes
with evidence of disease effects from other studies (such
as animal knock-out models, protein expression stud-
ies, etc.). However, limitations of LRS technologies need
to be addressed before this technology can be generally
adopted [24]. LRS is currently more expensive than SRS,
though the costs are fast coming down. Library prepa-
ration is less forgiving than for SRS as fresh material or
even intact cells are recommended to minimise degra-
dation of ultra-long high molecular weight DNA (which
also requires specialised DNA isolation protocols). Both
PacBio and ONT have higher error rates for SNV detec-
tion compared to SRS, though LRS have been shown to
be better at calling SNVs in problematic areas [3]. There
is less choice of tools for both raw data analysis as well as
mapping and variant calling tools for LRS than SR-NGS
but are constantly being improved [25].

Conclusion

Only roughly 85-92% of the genome can be sequenced
confidently using SRS technologies [1], meaning~10%
of the genome is inaccessible or “dark” to SRS. We have
investigated the negative consequences of dark regions
on gene discovery across a range of disease and study
types, showing that dark regions are likely preventing
researchers from identifying genetic variants relevant to
human disease. This suggests dark regions are likely to
contribute to missing heritability. Long read sequencing
can be used to investigate these dark regions and aid the
discovery of pathogenic variants that we currently cannot
identify using SRS technology.

Methods
The detailed methods can be found in the Additional
file 1.

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/s40659-023-00455-0.

Additional file 1: Methods S1. Table S1. GO enrichment analysis for the
Schizophrenia dark genes vs genome generated 17 FDR significant GO
terms. Table $2. GO enrichment analysis for the BMI dark genes vs rest
of the genome generated 228 FDR significant GO terms, of which the
top 30 are presented in this table. Table $3. GO enrichment analysis for
the MDD GWAS genes with dark regions vs rest of the genome returned
45 FDR significant GO terms, of which the top 30 are represented in this
table. Table S4. Results of the GO enrichment for the Cholesterol GWAS
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dark vs rest of genome, showing the top 30 enriched GO terms (out of
433 terms with p-value< 0.05, but not FDR significant). Table S5. Results
of the GO enrichment for the Crohn’s dark vs genome, showing the top
30 enriched GO terms (out of 438 terms with p-value< 0.05, but not FDR
significant). Table S6. Results of the GO enrichment for the ASD dark vs
genome, showing the top 30 enriched GO terms (out of 106 terms with
p-value< 0.05, but not FDR significant). Table S7. Results of the GO enrich-
ment for the ALS GWAS dark genes vs rest of the genome, showing the
top 30 enriched GO terms (out of 185 terms with p-value< 0.05 but not
FDR significant). Table S8. Results of the GO enrichment for the BD GWAS
dark genes vs rest of the genome, showing the top 30 enriched GO terms
(out of 160 terms with p-value< 0.05 but not FDR significant). Table S9.
SCZ darkCDS vs genome. Table S10. Results of the GO enrichment for
the Schizophrenia dark CDS vs remaining GRL genes. No terms were FDR
significant, however, five terms with p< 0.05 were returned, all related to
brain development. Table S11. BMIdarkCDS vs genome Table $12.Top
20 GO terms for the BMI dark CDS vs remaining GRL genes. No FDR sig-
nificant terms, however, 35 terms with p< 0.05 were returned. Table S13.
MDDdarkCDS vs genome. Table S14. Top 20 GO terms for the MDD GWAS
genes with dark CDS vs remaining GWAS genes. In total 40 terms (p< 0.05
but not FDR significant) were returned. Table S15. All 22 SCHEMA genes
with p<0.05 with at least partially dark CDS regions of which ten genes
have >5% dark CDS. Table S16. Subset of ASD associated genes from the
ASC which have dark CDS regions, of which two genes have >5% dark
CDS. Table S17. SFARI Score 1 (High Confidence) genes with dark CDS
regions, of which four genes have >5% dark CDS. Figure S1. Modified
browser views of RAC3 from A. GnomAD Browser of human genetic vari-
ation (showing the average read depth of both whole exome and whole
genome sequencing data) and B. SCHEMA Browser of SCZ associated rare
variants. Note for each browser the conspicuous absence of any genetic
variants (pathogenic or benign) from low read-depth (dark) regions from
exome and whole genome sequencing data, in particular for exon 1. Fig-
ure S2. Modified browser views of TRAPPC10 from A. GnomAD Browser of
human genetic variation (showing the average read depth of both whole
exome and whole genome sequencing data) and B. SCHEMA Browser

of SCZ associated rare variants. Figure S3. Modified browser views of
UBE2L3 from A. GnomAD Browser of human genetic variation (show-

ing the average read depth of both whole exome and whole genome
sequencing data) and B. SCHEMA Browser of SCZ associated rare variants.
Note for each browser the conspicuous absence of any genetic variants
(pathogenic or benign) from low read-depth (dark) regions from exome
and whole genome sequencing data, in particular for exon 1. Figure S4.
Modified browser views of FAM86BT from A. GnomAD Browser of human
genetic variation (showing the average read depth of both whole exome
and whole genome sequencing data) and B. SCHEMA Browser of SCZ
associated rare variants. Note for each browser the conspicuous absence
of any genetic variants (pathogenic or benign) from low read-depth
(dark) regions from exome and whole genome sequencing data, across
five of seven exons. Figure S5. Modified browser views of COROTA from
A. GnomAD Browser of human genetic variation (showing the aver-

age read depth of both whole exome and whole genome sequencing
data); B. SCHEMA Browser of SCZ associated rare variants and C. Autism
Sequencing Consortium Browser of rare variants. Note for each browser
the conspicuous absence of any genetic variants (pathogenic or benign)
from low read-depth (dark) regions from exome and whole genome
sequencing data, in particular exon 10. Figure S5. Modified browser views
of SHANK2 from A. GnomAD Browser of human genetic variation (show-
ing the average read depth of both whole exome and whole genome
sequencing data); B. SCHEMA Browser of SCZ associated rare variants and
C. Autism Sequencing Consortium Browser of rare variants. Note for each
browser the conspicuous absence of any genetic variants (pathogenic

or benign) from low read-depth (dark) regions from exome and whole
genome sequencing data. Figure S6. Modified browser views of ARX
from A. GnomAD Browser of human genetic variation (showing the aver-
age read depth of both whole exome and whole genome sequencing
data); B. SCHEMA Browser of SCZ associated rare variants and C. Autism
Sequencing Consortium Browser of rare variants. Note for each browser
the conspicuous absence of any genetic variants (pathogenic or benign)
from low read-depth (dark) regions from exome and whole genome
sequencing data, in particular exon 2. Figure S7. Modified browser views



https://doi.org/10.1186/s40659-023-00455-0
https://doi.org/10.1186/s40659-023-00455-0

Ryan and Corvin Biological Research (2023) 56:42

of CASZ1 from A. GnomAD Browser of human genetic variation (show-
ing the average read depth of both whole exome and whole genome
sequencing data); B. SCHEMA Browser of SCZ associated rare variants and
C. Autism Sequencing Consortium Browser of rare variants. Note for each
browser the conspicuous absence of any genetic variants (pathogenic

or benign) from low read-depth (dark) regions from exome and whole
genome sequencing data, in particular exons 9, 18 (alternatively spliced)
and 19. Figure S8. Percentage of genes from SFARI (Score 1, Score 2,
Score 3, Syndromic or absent from SFARI) with dark regions, stratified by
ASC association g-values (less than 0.1; 0.1 to 0.3, greater than 0.3). This
table shows that the SFARI genes with the greatest enrichment of dark
gene bodies are those categorised as either Score 2 (High Confidence) or
Syndromic, with ASC association g-values > 0.3.
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