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Abstract
For more than 20 years, Saccharomyces cerevisiae has served as a model organism for genetic studies and molecular 
biology, as well as a platform for biotechnology (e.g., wine production). One of the important ecological niches 
of this yeast that has been extensively studied is wine fermentation, a complex microbiological process in which 
S. cerevisiae faces various stresses such as limited availability of nitrogen. Nitrogen deficiencies in grape juice 
impair fermentation rate and yeast biomass production, leading to sluggish or stuck fermentations, resulting 
in considerable economic losses for the wine industry. In the present work, we took advantage of the “1002 
Yeast Genomes Project” population, the most complete catalogue of the genetic variation in the species and a 
powerful resource for genotype-phenotype correlations, to study the adaptation to nitrogen limitation in wild 
and domesticated yeast strains in the context of wine fermentation. We found that wild and domesticated yeast 
strains have different adaptations to nitrogen limitation, corroborating their different evolutionary trajectories. Using 
a combination of state-of-the-art bioinformatic (GWAS) and molecular biology (CRISPR-Cas9) methodologies, we 
validated that PNP1, RRT5 and PDR12 are implicated in wine fermentation, where RRT5 and PDR12 are also involved 
in yeast adaptation to nitrogen limitation. In addition, we validated SNPs in these genes leading to differences 
in fermentative capacities and adaptation to nitrogen limitation. Altogether, the mapped genetic variants have 
potential applications for the genetic improvement of industrial yeast strains.
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Background
Saccharomyces cerevisiae has been considered a central 
organism for over 20 years for genetics and molecular 
biology studies, being the first eukaryotic species with 
its genome completely sequenced [1]. Furthermore, this 
yeast is also a biological platform for biotechnology, with 
applications such as the production of bread, beer, wine, 
high-value metabolites, heterologous proteins, and vac-
cines [2–6]. This has led to the genome sequencing of a 
growing number of yeast strains, revealing the genomic 
characteristics that affect their adaptation to various nat-
ural and artificial niches [7, 8].

The first attempts to reveal yeast genetic diversity 
showed the presence of two yeast populations: domes-
ticated yeasts associated with human activities (e.g., 
bread, beer and wine) and wild yeasts from natural envi-
ronments (without human intervention) [9–11]. Recent 
genome sequencing studies have revealed population 
structure with greater precision [12–15], being the “1002 
Yeast Genomes Project” the most complete catalogue 
of genetic variation in S. cerevisiae to date and a power-
ful resource for genotype-phenotype correlations in this 
species [16].

In the last decades, QTL (Quantitative Trait Loci) 
mapping has been the main experimental approxima-
tion to fill the gap between genotype and phenotype in 
yeast, being widely used to map the causatives genes that 
affect phenotypes such as thermotolerance, chemical 
resistance, translation termination, and production/con-
sumption of metabolites during alcoholic fermentation, 
among many others [17–30]. However, other strategies 
like GWAS (Genome-Wide Association Studies), which 
has been successfully applied in human populations for 
the detection of disease-associated risk genetic variants, 
have rarely been used in yeast. This is due to the neces-
sity of genotyping a large number of strains from diverse 
ecological niches, a problem that is completely overcome 
by the “1002 Yeast Genomes Project” population [16]. 
Therefore, GWAS seems an ideal next step to study the 
genetic bases of yeast adaptation to different natural and 
artificial niches.

An important ecological niche that has been exten-
sively studied is the fermentative environment. S. cerevi-
siae is the main microorganism responsible for alcoholic 
fermentation in the winemaking process, contributing 
not only to the alcoholic degree but also to the flavours 
and aromas of the final product [31, 32]. Wine fermenta-
tion is a complex microbiological process where S. cere-
visiae outperforms its competitors by transforming the 
sugars present in the grape must into ethanol [33] while 
facing various stresses, such as low pH (between 2 and 
3), high osmotic pressure (20% of sugar concentration), 
high sulphite levels, ethanol toxicity, and limited nitrogen 
availability [34, 35].

Nitrogen limitation during wine fermentation is fun-
damental because, under this condition, yeast cells grow 
slowly, reducing ribosome biogenesis and protein trans-
lation, and arresting the cell cycle in G1 [36]. Nitrogen 
deficiencies in grape juice impair fermentation rate and 
yeast biomass production, leading to sluggish or stuck 
fermentations, resulting in considerable economic losses 
for the wine industry [37]. Recently, we have addressed 
the importance of natural diversity related to adaptation 
to low nitrogen levels, especially in terms of the recog-
nition of wild yeast strains as a reservoir of beneficial 
alleles with potential industrial applications [38]. There-
fore, performing a GWAS approach using the “1002 Yeast 
Genomes Project” population may allow us to search 
for wild alleles that favour the fermentation process 
and adaptation to nitrogen limitation, across the entire 
genetic diversity in S. cerevisiae described so far.

In the present work, we studied the adaptation to nitro-
gen limitation in wild and domesticated yeast strains 
belonging to the “1002 Yeast Genomes Project” popu-
lation in the context of wine fermentation. To achieve 
this, we phenotyped this population under limited and 
non-limited nitrogen microfermentation conditions. We 
used this phenotypic information to (i) compare wild 
and domesticated yeast strains and (ii) perform GWAS 
analyses to map genetic variants underlying the studied 
phenotypes. We used a state-of the-art molecular biology 
tool, Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR) associated with the Cas9 protein 
(CRISPR-Cas9) technique, to validate RRT5, PDR12 and 
PNP1 genes in the studied phenotypes and also to elu-
cidate single nucleotide polymorphisms (SNPs) in these 
ORFs that lead to differential adaptation to nitrogen limi-
tation. Overall, the identified alleles have potential appli-
cations for the genetic improvement of industrial wine 
yeast strains by modifying their genomes with specific 
point mutations, which could be an interesting approach 
for the wine industry.

Results
Comparing the adaptation of wild and domesticated yeast 
strains to nitrogen limitation
To evaluate the adaptation of a wide yeast population to a 
nitrogen-limited wine fermentation condition, we carried 
out microfermentations of the yeast strains belonging 
to the “1002 Yeast Genomes Project” [16]. These micro-
fermentations were carried out in synthetic musts (SM) 
with limiting (SM60; 60 mg/L of yeast assimilable nitro-
gen (YAN)) and non-limiting (SM300; 300 mg/L of YAN) 
nitrogen contents, and we were able to collect data from 
947 yeast strains that grew in both conditions (Additional 
file 1: Table S1).

To compare the adaptation of wild and domesticated 
yeasts, we first extracted four kinetic parameters from 
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the growth curves: “efficiency” (proliferation efficiency), 
“rate” (proliferation rate), “lag” (proliferation lag) and 
“AUC (area under the curve)”. These parameters were 
obtained for each yeast strain in both growth conditions 
(SM60 and SM300). We calculated the ratio between 
the values obtained in SM60 and SM300 for each yeast 
strain as a specific measure of adaptation to nitrogen 
limitation (henceforth, “SM60/SM300 ratio” or simply 
“ratio”), obtaining a total of 12 different phenotypes (four 
kinetic parameters for the three conditions evaluated) 
(Additional file 1: Table S1). In addition, we classified 
each yeast strain in the population as “wild” (57 of 947), 
“domesticated” (560 of 947) or “unknown” (330 of 947), 
following previous criteria [39]; the “domesticated” cate-
gory was further divided into “domesticated (wine)” (348 
of 947) and “domesticated (non-wine)” (212 of 947), given 
if they belong to the “Wine/European” cluster or not [16] 
(Additional file 1: Table S1). Moreover, special attention 
was paid to the genomic information of each yeast strain 
in terms of ploidy, aneuploidies and heterozygosity levels 
(Additional file 1: Table S1).

The results showed that, although in SM300 there 
were almost no differences between domesticated and 
wild yeast strains (except in terms of rate and efficiency) 
(Additional file 2: Figure S1), in SM60 there were clear 
differences between these two groups, with the domes-
ticated yeast strains having higher values for all the four 
parameters under study (Additional file 2: Figure S2). 
This led to the higher values of the four parameters for 
domesticated yeast strains when considering the SM60/
SM300 ratio, indicating that these two groups have dif-
ferent adaptations to the nitrogen-limited condition: 
while domesticated yeast strains have higher efficiency, 
rate and AUC values, wild yeast strains have lower lag 
values (Fig. 1).

Next, we analysed the phenotypes separating the wine 
and non-wine domesticated yeast strains, observing a 
similar scenario. For instance, while neither in SM300 
nor in SM60 the wine domesticated yeast strains had 
the highest rate value (Additional file 2: Figures S3-S4), 
they had the highest value in terms of the SM60/SM300 
ratio for this parameter, same for efficiency and AUC val-
ues (Fig.  2). Furthermore, wild yeast strains showed the 
same pattern compared to the separated wine and non-
wine domesticated yeast strains, with lower values of all 
four kinetic parameters compared to both domesticated 
groups (Fig. 2).

Genomic features such as ploidy and aneuploidies 
could partly explain the observed phenotypic differences. 
To confirm this, we compared the values obtained for the 
four parameters under study in terms of ploidy (haploids 
vs. diploids vs. polyploids) and aneuploidies (euploids vs. 
aneuploids), observing some differences between these 
groups, although not for all the kinetic parameters and 

conditions evaluated (Additional file 2: Figures S5–S10). 
Particularly interesting is that, while no differences were 
observed in the SM60/SM300 ratios of the four param-
eters when comparing ploidy levels, when considering 
aneuploidies, all four SM60/SM300 ratios showed dif-
ferences (Additional file 2: Figures S7–S10). When we 
repeated the comparisons between the wild, wine domes-
ticated and non-wine domesticated groups, but consider-
ing only the diploid-euploid yeast strains of each group, 
we obtained the same results as before (Additional file 2: 
Figures S11–S13).

Mapping genetic variants involved in yeast adaptation to 
nitrogen limitation
To identify the causative variants associated with the 
nitrogen-limited microfermentations, we performed 
the GWAS analyses on all the 12 phenotypes previously 
mentioned. We considered only the diploid-euploid yeast 
strains (594 yeast strains in total) to have more reliable 
results, since both aneuploidies and ploidy (haploidy and 
polyploidy) may have large confounding effects when 
included in the GWAS [39]. From these analyses, we 
were able to map 109 different genetic variants, including 
loss-of-function (LOF) (1 of 109), copy number variants 
(CNVs) (13 of 109), and SNPs in both coding and non-
coding regions (95 of 109), with some of these variants 
(19 of 109) being pleiotropic (i.e., affecting more than one 
phenotype) (Additional file 1: Table S2 and Additional 
file 2: Figures S14–S16). We also searched for correla-
tions among the phenotypes under study. In general, we 
found a positive correlation among the efficiency, rate 
and AUC parameters, and a lack of correlation (or even 
a negative correlation) between these parameters and the 
lag (Fig. 3).

We further analysed the genetic variants obtained, 
looking for interesting candidates to be experimentally 
validated. We considered criteria such as variants having 
a low p-value, pleiotropic variants, genes with more than 
one variant affecting the same phenotype, and variants 
occurring in non-essential genes (according to the Sac-
charomyces genome database (SGD)). We finally selected 
three genes and their associated genetic variants for fur-
ther validation: PNP1, which encode a purine nucleoside 
phosphorylase and carries a SNP affecting three pheno-
types in SM300 (efficiency, rate and AUC); RRT5, which 
encode a putative protein of unknown function and con-
tains two SNPs in its coding region affecting the SM60/
SM300 ratio of AUC; and PDR12, which encode a plasma 
membrane ATP-binding cassette (ABC) transporter and 
includes three SNPs (two in the coding region and one in 
the regulatory region) affecting SM60/SM300 ratio of lag 
(Table 1).
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Specific SNPs account for differential adaptation to 
nitrogen limitation
We validated the involvement of some of the genetic vari-
ants identified by GWAS at two levels: whole gene level 
and SNP level. First, to validate the involvement of the 
previously selected genes in the studied phenotypes, we 
generated null mutants of these genes in a haploid lab-
oratory genetic background (BY4741 strain). Then, we 
evaluated these mutants in the same microfermentation 
conditions used previously. The results indicate that the 
three selected genes are involved in some of the studied 
phenotypes (Figs. 4, 5 and 6 and Additional file 1: Table 

S5). PNP1 null mutant showed the expected differences 
in efficiency, rate and AUC in SM300, but also in lag 
(Fig.  4). On the other hand, RRT5 null mutant showed 
the expected differences in AUC in SM60/SM300 ratio, 
but also in rate (Fig.  5); the same pattern was observed 
in SM60, but not in SM300 (Additional file 2: Figures 
S17–S18). Finally, PDR12 null mutant did not show 
the expected differences in lag in SM60/SM300 ratio 
(although it had a p-value very close to the statistical 
cut-off (0.0641)) but did for the other three parameters 
(Fig.  6). However, statistically significant differences in 

Fig. 1 Comparison between domesticated and wild strains for the SM60/SM300 ratio. The kinetic parameters compared were (A) efficiency, (B) 
rate, (C) lag and (D) AUC. Statistical analyses correspond to two-tailed Mann Whitney tests. ***: p < 0.001, **: p < 0.01, *: p < 0.05
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lag were observed in both SM300 and SM60 (Additional 
file 2: Figures S19–S20).

We then generated allelic mutants that carry only the 
SNPs mapped by GWAS to validate the involvement of 
these genetic variants in the studied phenotypes. In the 
case of PNP1, we found a yeast strain (named “SACE-
YCP”) in the “1002 Yeast Genomes Project” population 
that has an allele that differs from the BY4741 allele only 
at the desired position (933A>G), so we performed the 
allele swapping of this allele into the BY4741 strain. This 

corresponds to a synonymous mutation of a leucine in 
the amino acid sequence of Pnp1 (Table 2). Regarding the 
observed phenotypes, although we did not observe dif-
ferences in rate, lag and AUC in SM300 as in the case of 
the null mutant, we validated that this SNP is causing a 
difference in growth efficiency in SM300, confirming its 
involvement in this phenotype (Fig. 4).

In the cases of RRT5 and PDR12, we could not find 
yeast strains in the population carrying alleles with just 
the SNPs needed, so we had to introduce them with 

Fig. 2 Comparison between domesticated (non-wine), domesticated (wine) and wild strains for the SM60/SM300 ratio. The kinetic parameters 
compared were (A) efficiency, (B) rate, (C) lag and (D) AUC. Statistical analyses correspond to Kruskal-Wallis tests using Dunn’s multiple comparisons tests. 
***: p < 0.001, **: p < 0.01, *: p < 0.05
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CRISPR-Cas9 technology. This was technically diffi-
cult because the target region must include the SNP 
to be changed, limiting the region for gRNA design, 
which is key to correctly applying this technique [40]. 
This leads to the fact that, in the case of PDR12, only 

one of the two desired point mutations could be made 
(4393G>A), which corresponds to a conservative mis-
sense mutation from valine to isoleucine (V1465I) in the 
amino acid sequence of Pdr12 (Table 2). However, both 
desired point mutations were made for RRT5 (579C>T or 

Table 1 Genetic variants mapped by GWAS and selected for validation
Gene Gene ID Position a Reference SNP a Mutant SNP b Phenotype
PNP1 YLR209C 933 A G SM300_AUC

SM300_Efficiency
SM300_Rate

RRT5 YFR032C 579 C T Ratio_AUC

601 A C

PDR12 YPL058C 2781 T C Ratio_Lag

4393 G A
a Corresponding to the allele present in the reference yeast genome of the SGD (S288c strain) [80]. b Corresponding to the alternative allele present in the population

Fig. 3 Correlations between the phenotypes studied by GWAS. The colour scale goes from total negative correlation (red) to total positive correlation 
(blue), going through no correlation (white). The diameter of each circle is proportional to the colour scale to better highlight the correlations obtained
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601A>C), including an allele carrying both point muta-
tions (579C>T and 601A>C); these changes correspond 
to a synonymous mutation of threonine in the amino acid 
sequence of Rrt5, and to a non-conservative missense 
mutation from serine to arginine (S201R), respectively 
(Table 2).

Regarding the observed phenotypes, one of the 
RRT5 allele mutants carrying only one point mutation 
(579C>T) showed phenotypic differences in rate and 
AUC in SM60/SM300 with respect to the WT strain; in 
contrast, the allele mutant carrying the other point muta-
tion (601A>C) showed no differences in the parameters 

assayed (Fig.  5). In addition, the allele mutant carrying 
the 579C>T point mutation showed the same pattern as 
the null mutant for the SM60/SM300 ratios of the four 
analysed parameters (Fig.  5). Interestingly, the allele 
mutant carrying both mutations (579C>T and 601A>C) 
showed an intermediate behaviour, with differences in 
rate but not in AUC (Fig.  5). None of the RRT5 allele 
mutants showed the same profile as the null mutant 
in either SM300 or SM60 separately (Additional file 2: 
Figures S17–S18). On the other hand, the PDR12 allele 
mutant (4393G>A) showed the same profile of pheno-
typic differences as its null mutant, showing differences 

Fig. 4 Comparison between PNP1 mutants and their wild type (WT) strain in SM300. The kinetic parameters compared were (A) efficiency, (B) rate, 
(C) lag and (D) AUC. Statistical analyses correspond to ordinary one-way ANOVA using Holm-Šídák’s multiple comparisons tests, comparing in each case 
the WT versus the different mutants. ***: p < 0.001, **: p < 0.01, *: p < 0.05
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in efficiency, rate and AUC in SM60/SM300, but not in 
lag (Fig. 6); the same pattern was observed in SM60, but 
not in SM300 (Additional file 2: Figures S19–S20). Over-
all, these results demonstrate not only the involvement of 
PNP1, RRT5 and PDR12 in the studied phenotypes but 
also that the SNPs in these genes lead to differences in 
growth kinetics in wine fermentation conditions, with a 
direct impact on the differential adaptation to nitrogen 
limitation.

Discussion
In recent decades, the natural variation of S. cerevisiae 
has been massively exploited to understand ecological 
and evolutionary processes. This has resulted in the dis-
covery of genetic variants underlying complex traits that 
represent a rich genetic resource with the potential to 
provide new yeast strains for industrial fermentation pro-
cesses [41]. In this context, wild yeast strains are particu-
larly interesting to study, as they harbour higher genetic 
and phenotypic diversity than industrial (domesticated) 

Fig. 5 Comparison between RRT5 mutants and their wild type (WT) strain for the SM60/SM300 ratio. The kinetic parameters compared were 
(A) efficiency, (B) rate, (C) lag and (D) AUC. Statistical analyses correspond to ordinary one-way ANOVA using Holm-Šídák’s multiple comparisons tests, 
comparing in each case the WT versus the different mutants. ***: p < 0.001, **: p < 0.01, *: p < 0.05

 



Page 9 of 16Kessi-Pérez et al. Biological Research           (2023) 56:43 

Table 2 Amino acid changes caused by the mapped genetic variants
Protein Position a Type of mutation Reference AA a Mutant AA b

Pnp1 311 Synonymous Leu (L) Leu (L)

Rrt5 193 Synonymous Thr (T) Thr (T)

201 Missense
(non-conservative)

Ser (S) Arg (R)

Pdr12 927 Synonymous Asn (N) Asn (N)

1465 Missense
(conservative)

Val (V) Ile (I)

a Corresponding to the allele present in the reference yeast genome of the SGD (S288c strain) [80]. b Corresponding to the alternative allele present in the population. 
AA: Amino acid

Fig. 6 Comparison between PDR12 mutants and their wild type (WT) strain for the SM60/SM300 ratio. The kinetic parameters compared were 
(A) efficiency, (B) rate, (C) lag and (D) AUC. Statistical analyses correspond to ordinary one-way ANOVA using Holm-Šídák’s multiple comparisons tests, 
comparing in each case the WT versus the different mutants. ***: p < 0.001, **: p < 0.01, *: p < 0.05
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yeast strains and are potentially a reservoir of beneficial 
alleles for genetic improvement [38, 42]. In the present 
work, we took advantage of the “1002 Yeast Genomes 
Project” population [16], the most powerful genetic 
resource to date, to study the adaptation to nitrogen limi-
tation in the context of wine fermentation.

A widely used strategy for the phenotyping of a large 
number of yeast strains is to perform microculture exper-
iments and obtain kinetic parameters from the growth 
curves, such as efficiency of proliferation, rate of pro-
liferation and lag of proliferation [43]. Previous studies 
have found a strong correlation between efficiency and 
rate but no correlation (or even a negative) between lag 
and the other two parameters [23, 44]. Furthermore, the 
existing correlation between efficiency and rate depends 
largely on the environment [44] instead of biomass yield 
limitation as has been suggested in other works [45]. The 
present results corroborate these observations (Fig.  3), 
consistent with reports on artificial LOF mutants in S. 
cerevisiae [46], refuting the hypothesis of an evolutionary 
trade-off between efficiency and rate [47]. This suggests 
that efficiency and rate have similar underlying genetic 
structures, while being physiologically and evolutionarily 
distinct from lag [44].

We decided to add a fourth parameter in this study, 
AUC, as a more comprehensive parameter that could 
integrate the other three. The results show that this 
parameter positively correlates with efficiency and rate 
(Fig. 3), indicating that these parameters contribute more 
to AUC than lag. This is also corroborated by GWAS 
results, e.g., with the genetic variant of PNP1 gene that 
was mapped for efficiency, rate and AUC in SM300 
(Table 1 and Additional file 1: Table S2). However, genetic 
variants were also mapped exclusively for AUC, e.g., 
for the RRT5 gene (Table  1 and Additional file 1: Table 
S2). These results indicate that, strongly correlated with 
efficiency and rate, AUC could provide new informa-
tion on yeast adaptation when studying growth curves. 
To be used routinely by the yeast research community, 
a consensus is needed on the best way to calculate this 
parameter so that it can be automatically estimated by an 
equation such as the Gompertz growth equation [48].

Regarding the comparison between wild and domes-
ticated yeast strains, the results show that these two 
groups of yeasts have different adaptions to nitrogen 
limitation, measured as the ratio between the values of 
the parameters studied in SM60 and SM300. In prin-
ciple, it can be expected that domesticated yeast strains 
are better adapted than wild ones to nitrogen limitation 
due to their use in that condition. However, recent evi-
dence points in the opposite direction, given the scarcity 
of nitrogen sources that wild yeast strains have to face in 
natural environments, and therefore the need for these 
strains to adapt to this limitation [30, 38]. The results 

show that domesticated yeast strains have higher values 
of efficiency, rate and AUC, but, interestingly, wild yeast 
strains show a lower value of lag (Figs. 1 and 2). In terms 
of an industrial process like wine fermentation, what 
a winemaker wants is to have a yeast strain that shows 
high efficiency and high rate, but low lag. Since wild yeast 
strains show a lower lag compared to the domesticated 
yeast strains, they could act as reservoir of beneficial 
alleles with potential industrial applications, particularly 
in terms of decreasing the lag phase in response to nitro-
gen limitation. These results reinforce the idea that wild 
and domesticated yeast populations reflect different evo-
lutionary trajectories [9–11, 49, 50].

Using the parameters obtained from the microculture 
growth curves as phenotypic information, we mapped 
109 genetic variants by GWAS (Additional file 1: Table 
S2 and Additional file 2: Figures S14–S16). Interestingly, 
several genetic variants are found in the coding and/or 
regulatory regions of genes mapped for adaptation to 
nitrogen limitation in a previous work of our group [30]: 
USE1 and ECM38, which were previously identified by 
QTL mapping; MHO1, which showed de novo mutations; 
RRT5, OPT2, ECM38, ADY3 and CDA1, whose transcrip-
tion was upregulated in SM60 compared to SM300; and 
ATR1 and RPL42A, whose transcription was downregu-
lated in SM60 compared to SM300. In the present work, 
we found several genetic variants that fall within autono-
mously replicating sequences (ARSs) (sv9386, sv43187, 
sv57282, sv65176, sv73285, sv73286, sv78694), or close to 
an ARS (sv50798) or a tRNA (sv56522, sv56526). How-
ever, a detailed study is needed to find a direct relation-
ship between ARSs/tRNAs and wine fermentation. In the 
case of tRNAs, this relationship could be mediated by the 
TORC1 signalling pathway [24].

Another interesting identified genetic variant is the 
LOF in the SSK22 gene. LOFs in the population are 
caused by a variety of mutations, clustered together; 
these mutations are those predicted to have high impact 
by SnpEff [51]. In the SSK22 gene, we found 13 possible 
mutations causing potential LOF: one possible start-
ing codon loss (3G>A) and 12 different nonsense muta-
tions (181C>T, 434G>A, 673G>T, 1065T>G, 1294C>T, 
1747C>T, 1781T>A, 1900C>T, 2701C>T, 3289C>T, 
3406C>T and 3964G>T). SSK22 encodes a MAP kinase 
kinase kinase of HOG1 mitogen-activated signalling 
pathway [52, 53], whose LOF SNPs are candidates for val-
idation in future work.

We investigated in more detail three genes that harbour 
some of the genetic variants mapped by GWAS (Table 1). 
We validated their involvement in wine fermentation 
(PNP1) (Fig.  4) and adaptation to nitrogen limitation 
(RRT5 and PDR12) (Figs.  5 and 6), using the BY4741 
laboratory strain as genetic background. Although this 
strain has lower fermentation capacities compared to an 
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industrial strain, leading to large error bars for the kinetic 
parameters (Figs.  4, 5 and 6), the observed phenotypic 
differences between isogenic strains, among which the 
only genetic variation is a unique SNP, allowed us to asso-
ciate these genetic variants with the phenotypes under 
study. An interesting approach would be to introduce 
these same mutations into an industrial strain and per-
form not only microculture experiments but also larger-
scale fermentations, which would allow us to assess both 
the effect of the industrial genetic background and the 
impact of the SNPs on other fermentative phenotypes, 
such as nitrogen consumption and ethanol production. It 
is important to highlight that, to the best of our knowl-
edge, the present work provides the first evidence of the 
participation of PNP1 and RRT5 in wine fermentation 
and confirms the participation of PDR12 in this process.

The first of them, PNP1, encodes a purine nucleoside 
phosphorylase that specifically metabolizes inosine and 
guanosine nucleosides, being involved in the nicotin-
amide riboside salvage pathway [54, 55]. It has been 
shown that Pnp1 is associated with the control of ATP 
homeostasis during the respiro-fermentative transition 
in yeast: under glucose-depleted conditions, this protein 
regulates the accumulation of inosine, restoring ATP 
levels [56]. Furthermore, its hemizygous mutant showed 
lower relative growth compared to its WT control (S288c 
background) in fermentation production medium (FPM) 
(i.e., showed haploinsufficiency) [57]. These antecedents 
support the phenotypic changes observed in the null 
mutant and the allele mutant of this gene, for efficiency, 
rate and AUC in SM300 (Fig. 4).

On the other hand, RRT5 is a non-essential gene iden-
tified in a screen for mutants with increased levels of 
rDNA transcription, which encodes a putative protein 
of unknown function; it is also highly expressed during 
sporulation [58, 59]. As in the case of PNP1, its hemi-
zygous mutant showed lower relative growth compared 
to its WT control in FPM [57]. Moreover, its deletion 
caused a decreased rate of glutamine utilization as a 
nitrogen source [60], which is an antecedent that rein-
forces the idea that this gene is involved in the adaptation 

to nitrogen limitation. This can be seen for rate and AUC 
for the SM60/SM300 ratio in the null mutant and in at 
least one of the two SNPs tested (Fig. 5). In addition, its 
deletion also caused a defect in vacuolar fragmentation, 
which could be related to nitrogen utilization through the 
TORC1 complex, which is located in the vacuolar mem-
brane [24].

Finally, PDR12 encodes a plasma membrane ABC 
transporter, more specifically a weak-acid-inducible 
multidrug transporter required for weak organic acid 
resistance [61–64]. For example, Pdr12 is involved in the 
export of fusel acids derived from amino acids such as 
leucine, isoleucine, valine, phenylalanine and tryptophan, 
linking the nitrogen source with the expression of this 
transporter [65]. Regarding the fermentation process, 
a hemizygous yeast strain for PDR12 showed haplopro-
ficiency in FPM [57]; moreover, this gene was found to 
be differentially expressed in phases I (exponential) and 
II (stationary) of a batch wine fermentation [66]. This 
evidence supports that PDR12 is implicated in yeast 
adaptation to nitrogen limitation, due to the phenotypic 
changes caused by both the null mutant and the allele 
mutant of this gene, for efficiency, rate and AUC in the 
SM60/SM300 ratio (Fig. 6).

Interestingly, out of the four evaluated SNPs, two cor-
respond to synonymous mutations, one to a conservative 
missense mutation, and only one to a non-conservative 
missense mutation (Table  3). Although it is generally 
accepted that missense mutations (especially the non-
conservative ones) could have greater phenotypic effects 
by directly impacting protein function, it has been well 
established that synonymous mutations can also have 
phenotypic effects, potentially impacting translation 
efficiency (in terms of elongation rate and/or accuracy) 
[67], and even gene expression levels [68]. In yeast, it has 
been suggested that transcriptional mechanisms may 
play a role in shaping codon bias, with mRNA second-
ary structure connecting transcriptional activity to codon 
bias in highly expressed genes [69]. In terms of codon 
usage, while the silent mutation in PNP1 changes the WT 
codon (TTA) for another (TTG) with almost the same 

Table 3 Yeast strains used in the present work for validations
Yeast strain Relevant genotype Source
BY4741 MATa; his3∆1; leu2∆0; met15∆0; ura3∆0 Lab strain

SACE-YCP - (16)

Y184 BY4741; pnp1::URA3 This work

Y223 BY4741; PNP1: g.933A>G This work

YC546 BY4741; RRT5: g.579C>T This work

YC548 BY4741; RRT5: g.601A>C This work

YC549 BY4741; RRT5: g.579C>T,g.601A>C This work

YC552 BY4741; rrt5::URA3 This work

YC571 BY4741; pdr12::URA3 This work

YC572 BY4741; PDR12: g.4393G>A This work
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frequency (26.32 vs. 26.48 per thousand, respectively), 
the silent mutation in RRT5 changes the WT codon 
(ACT) for another (ACC) with lower frequency (20.22 
vs. 12.47 per thousand, respectively) [70], which could 
explain the phenotypic differences observed (Fig.  5 and 
Additional file 2: Figures S17–S18).

The results obtained show the power of the combina-
tion of GWAS and CRISPR to elucidate the genetic bases 
of a complex trait, such as adaptation to nitrogen limita-
tion, at the level of single nucleotide resolution. Although 
we did not directly link the validated SNPs with a “wild” 
origin, the results obtained has clear applied potential 
to improve an industrial wine yeast strain by introduc-
ing the validated SNPs using CRISPR, which could be 
an interesting approach for the wine industry. It is worth 
mentioning that genetic engineering has rarely been used 
for yeast improvement in the food industry, mainly due 
to legal restrictions and consumer rejection; however, 
new technologies collectively known as “new breeding 
techniques” (NBTs) are challenging this paradigm, and 
CRISPR has been used experimentally to produce a wide 
variety of commercial genetically modified (GM) crops, 
such as maize and soybean [71].

Conclusions
In the present work, we studied the adaptation to nitro-
gen limitation in the context of wine fermentation using 
the “1002 Yeast Genomes Project” population, which 
is the most complete catalogue of the genetic variation 
in S. cerevisiae to date. By comparing different kinetic 
parameters of growth curves obtained in microculture 
experiments, we found that wild and domesticated yeast 
strains have different adaptations to nitrogen limitation, 
corroborating that these two groups have different evo-
lutionary trajectories. Using a combination of state-of-
the-art bioinformatic (GWAS) and molecular biology 
(CRISPR) methodologies, we validated that PNP1, RRT5 
and PDR12 are implicated in wine fermentation, where 
RRT5 and PDR12 are also involved in yeast adaptation to 
nitrogen limitation. Moreover, we validated that SNPs in 
these genes lead to differences in the studied phenotypes. 
Therefore, the genetic variants mapped have potential 
applications for the genetic improvement of industrial 
yeast strains for the wine industry.

Methods
Yeast strains
“1002 Yeast Genomes Project” population.

In the phenotyping experiments, we used 974 of the 
1011 fully sequenced yeast strains belonging to the “1002 
Yeast Genomes Project” [16]. For GWAS experiments, 
we considered the phenotypic data of a subset of this 
population, which consisted solely of diploid-euploid 

(594 yeast strains in total). All the yeast strains used are 
listed in Additional file 1: Table S1.

Null mutants and allelic mutants
To validate the involvement of the genetic variants iden-
tified from GWAS experiments, we generated a set of 
mutant yeast strains from the BY4741 laboratory strain. 
Two types of mutants were generated: “null mutants”, 
in which the entire ORF under study was replaced by a 
selection marker (URA3 gene); and “allelic mutants”, 
in which we obtained yeast strains with only the point 
mutation under study for each selected ORF, either 
through allele swapping or CRISPR-Cas9 techniques (see 
below for more details). All the yeast strains generated in 
the present work are listed in Table 3.

Phenotyping of the “1002 yeast genomes Project” 
population
Synthetic must composition
The experiments were carried out with synthetic musts 
that mimic natural grape musts but with defined compo-
sitions, prepared as previously described [23]. The com-
position of sugar was 250  g/L in total (125  g/L glucose 
and 125 g/L fructose), while the composition of nitrogen 
sources was 40% ammonium and 60% amino acids. The 
concentration of nitrogen sources was modified at two 
different levels: 60 mg/L (SM60) and 300 mg/L (SM300) 
of YAN, which correspond to limiting and non-limiting 
nitrogen conditions, respectively [24, 72].

Microculture fermentations
Yeast strains were phenotyped under fermentative micro-
culture conditions (SM300 and SM60) by monitoring the 
OD600 of the cells using 30 min intervals on a Tecan Sun-
rise microplate reader (Tecan, Germany). The relative fit-
ness variables (growth parameters) for each yeast strain 
were calculated as previously described [73]. Briefly, 
proliferation efficiency (“efficiency”), proliferation rate 
(“rate”) and proliferation lag time (“lag”) were extracted 
from high-density growth curves using Gompertz growth 
Eq.  [48] in Graph Pad Prism 7.04 software. In addition, 
we calculated the area under the growth curve (AUC) 
as a fourth growth parameter. Statistical analyses of 
these parameters consisted of one-way ANOVA using 
Holm-Šídák’s multiple comparisons test, which were 
also performed using Graph Pad Prism 7.04 software. All 
microculture experiments were carried out in three inde-
pendent biological replicas for the “1002 Yeast Genomes 
Project” population and twelve independent biological 
replicas for the null mutants and allelic mutants of the 
BY4741 strain.
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Genome-wide association studies
GWAS experiments were performed as previously 
described [16, 39]. Briefly, we used the previously 
obtained phenotypic information and the genotypic 
information of the yeast strains belonging to the “1002 
Yeast Genomes Project” to run the FastLmmC program, 
which implements the “Factored Spectrally Transformed 
Linear Mixed Model” (FaST-LMM) algorithm and con-
siders the stratification of the lineages present in the yeast 
population [74]. We took into consideration only the 
diploid-euploid yeast strains from the population. SNPs, 
LOF, gene presence/absence, and CNVs matrices used 
in GWAS were taken from [39]. In the variant matrix, 
SNPs with a minor allele frequency (MAF) greater than 
5% in the population were included along with the most 
frequent minor allele for non-biallelic SNPs. We used the 
SNPs matrix with MAF > 0.5% in GWAS to correct for 
population structure. We used a threshold of 5% fam-
ily-wise error rate for p-values in GWAS to determine 
whether markers are significantly associated with pheno-
types. The alleles mapped by GWAS were further anal-
ysed using the SGD (https://www.yeastgenome.org/) [75] 
to confirm their association with the studied phenotypes.

Generation of mutant yeast strains
Transformation method
Yeast transformations and co-transformations were car-
ried out using the standard lithium acetate transforma-
tion protocol [76] in the BY4741 genetic background 
(MATa; his3∆1; leu2∆0; met15∆0; ura3∆0). All the PCR 
amplifications were performed using the Phusion Flash 
High Fidelity Master mix (Thermo Scientific, USA) 
according to the manufacturer’s instruction. Primers and 
gRNAs used for cloning, deletion, allele replacement and 
CRISPR-Cas9 are listed in Additional file 1: Table S3–S4. 
The yeast strains used for validations in this work are 
listed in Table 3.

Null mutants of PNP1, RRT5 and PDR12 genes
Null mutants for the three genes under study were gener-
ated by PCR amplification of the URA3 gene and direct 
replacement by homologous recombination at each 
locus. Deletions were carried out using primers with 
50 bp of overhang for direct recombination with the yeast 
genome and confirmed by standard colony PCR using 
primers upstream and downstream of each locus.

Allelic mutants of PNP1 gene (allele swapping)
Allele swapping of PNP1 in the BY4741 genetic back-
ground was carried out according to a previously 
described method [77]. Briefly, the PNP1 allele from 
the SACE-YCP strain, which belongs to the “1002 Yeast 
Genomes Project” [16], was amplified by PCR using 
genomic DNA. The PNP1 allele included 936  bp from 

the coding sequence plus 300  bp of the transcriptional 
terminator. The PNP1 allele was fused with the HphMx 
cassette downstream of the PNP1 terminator and cloned 
into the pRS426 plasmid using yeast recombinational 
cloning, and using PCR primers with 50 bp of overhang 
between adjacent PCR products for homologous recom-
bination [78]. The SACE-YCP PNP1 allele was then 
amplified by PCR from pRS426 plasmid, and the PCR 
product was used to transform the previously generated 
BY4741 PNP1∆ strain, replacing the URA3 gene with the 
SACE-YCP PNP1 allele. The correct replacement of the 
URA3 gene by the SACE-YCP PNP1 allele was confirmed 
by PCR amplification and sequencing of the PCR product 
(Macrogen, Republic of Korea).

Allelic mutants of RRT5 and PDR12 (CRISPR-Cas9)
gRNAs design involved a short 20 nucleotides sequence 
with the PAM sequence (5’-NGG-3’) at their 3’ end. For 
specific nucleotide changes, gRNAs sequences were 
designed at the position of interest (579 and 601 for RRT5 
gene, and 4393 for PDR12 gene) using Benchling soft-
ware (https://www.benchling.com/), with the genomic 
sequence of S288c strain as reference. The designed 
primers were cloned in the pAEF5 plasmid (Addgene 
plasmid #136305), which presents the Cas9 and gRNAs 
expression cassettes [79]. Each primer had 5’ overhangs 
to the SapI enzyme cleavage site, which allowed the 
primers to be cloned into the plasmid. To do this assem-
bly, each primer was first phosphorylated at the 5’-end 
with the polynucleotide kinase (PNK) enzyme for 1 h at 
37 °C and then each pair of phosphorylated primers was 
pooled in a 1:10 dilution to perform the annealing pro-
cedure in a thermocycler at 96 °C for 6 min, lowering to 
23 °C at a rate of 0.1 °C/second. With the primers hybrid-
ized, a Golden Gate procedure was performed, using a 
reaction containing 1 µL of SapI (NEB, USA), 1 µL of T4 
DNA ligase (Thermo Scientific, USA), 1 µL 10X ligase 
buffer (NEB, USA), 0.5 µL of pAEF5 vector, and 4.5 µL 
of nuclease-free water. The reaction was incubated in a 
thermocycler for 10 cycles at 42 °C for 2 min and 16 °C 
for 5 min, then heated at 60 °C for 10 min and 80 °C for 
10  min. Finally, 5 µL of the product was used to trans-
form competent E. coli DH5α (Thermo Fisher, USA). A 
single colony was selected for plasmid purification.

Given the ability of Cas9 to generate double-stranded 
cuts, it is possible to repair the cleavage site with the 
endogenous yeast homologous recombination system 
[40]. For the replacement DNA fragment, sequences 
with the desired point mutation(s) and 50 bp homology 
upstream and downstream to the region of interest were 
synthesized. The linear fragment synthesized was ampli-
fied by PCR and the BY4741 strain was co-transformed 
with the plasmid containing the gRNA for the corre-
sponding cut. The correct changes in the sequence of the 

https://www.yeastgenome.org/
https://www.benchling.com/


Page 14 of 16Kessi-Pérez et al. Biological Research           (2023) 56:43 

RRT5 and PDR12 genes were confirmed by PCR ampli-
fication and sequencing of the PCR product (Macrogen, 
Republic of Korea).
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GWAS  Genome-wide association study
LOF  Loss-of-function
MAF  Minor allele frequency
NBT  New breeding technique
ORF  Open reading frame
QTL  Quantitative trait locus
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