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Abstract
Background Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a rare inherited skin disease caused by variants 
in the COL7A1 gene, coding for type VII collagen (C7), an important component of anchoring fibrils in the basement 
membrane of the epidermis. RDEB patients suffer from skin fragility starting with blister formation and evolving into 
chronic wounds, inflammation and skin fibrosis, with a high risk of developing aggressive skin carcinomas. Restricted 
therapeutic options are limited by the lack of in vitro models of defective wound healing in RDEB patients.

Results In order to explore a more efficient, non-invasive in vitro model for RDEB studies, we obtained patient 
fibroblasts derived from discarded dressings) and examined their phenotypic features compared with fibroblasts 
derived from non-injured skin of RDEB and healthy-donor skin biopsies. Our results demonstrate that fibroblasts 
derived from RDEB chronic wounds (RDEB-CW) displayed characteristics of senescent cells, increased myofibroblast 
differentiation, and augmented levels of TGF-β1 signaling components compared to fibroblasts derived from RDEB 
acute wounds and unaffected RDEB skin as well as skin from healthy-donors. Furthermore, RDEB-CW fibroblasts 
exhibited an increased pattern of inflammatory cytokine secretion (IL-1β and IL-6) when compared with RDEB and 
control fibroblasts. Interestingly, these aberrant patterns were found specifically in RDEB-CW fibroblasts independent 
of the culturing method, since fibroblasts obtained from dressing of acute wounds displayed a phenotype more 
similar to fibroblasts obtained from RDEB normal skin biopsies.
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Background
Epidermolysis Bullosa (EB) is a group of genodermato-
ses characterized by skin and mucosa fragility and the 
formation of blisters due to mechanical stress [1]. EB, 
while varied in presentation and severity, is caused by 
mutations in genes coding for proteins that maintain the 
normal structural integrity of skin. Patients with EB are 
classified into four general types based on the genetic 
defects and the area of the skin where fragility is most 
evident: EB simplex (EBS); Junctional EB (JEB); Dystro-
phic EB (DEB); and Kindler EB (KEB) [2, 3].

The four general types of EB are further divided into 
specific sub-types which have their own clinical char-
acteristics and disease severity, some being more inca-
pacitating than others [3]. One of the more debilitating 
sub-types of EB is Recessive Dystrophic EB (RDEB), 
which itself can be sub-classified into RDEB intermedi-
ate and RDEB severe. Each RDEB subtypes is caused by 
recessive variants in the COL7A1 gene and have a highly 
impaired or null accumulation of type VII collagen pro-
tein (C7) [4]. As a consequence of this genetic defect, 
patients have fragile skin and minimal trauma can trig-
ger painful blisters and wounds that are often very slow 
to heal. Moreover, patients with RDEB have poor clini-
cal prognosis and a high risk of developing aggressive 
cutaneous squamous cell carcinoma (cSCC) early in life 
[4–6].

The cancer-prone stromal microenvironment observed 
in RDEB is influenced by chronic inflammation as well 
as fibrosis [7–10]. A major factor contributing to fibrosis 
in RDEB are isoforms of Transforming Growth Factor-β 
(TGF-β), primarily TGF-β1. In a normal wound heal-
ing process, this factor participates in the differentia-
tion of fibroblasts into myofibroblasts, characterized by 
the increased production of alpha-smooth muscle actin 
(α-SMA) and the formation of stress fibers, which help to 
mechanically close wounds by contraction [11]. However, 
in the context of impaired healing in RDEB, wounds and 
skin experience chronic fibrosis which leads to stiffening 
of the extracellular matrix (ECM) and release of latent 
TGF-β1. The latter generates a positive feedback loop of 
fibrosis and inflammation, as TGFβ-induced myofibro-
blast differentiation is not only associated with altered 
ECM deposition, but also to increased production of 
multiple inflammatory cytokines [4].

Blisters and wounds in RDEB have been character-
ized as being highly inflamed, with several inflamma-
tory cytokines identified as increased in the scar tissue 
and serum of patients [12–14]. Of interest among these 
inflammatory cytokines is interleukin-6 (IL-6), a cytokine 
that normally plays a role in proper wound closure but 
has also been associated with more severe manifestations 
of RDEB [15]. IL-6 accumulation induces interleukin-1β 
(IL-1β) production in macrophages, which in turn 
induces keratinocyte growth factor (KGF) production in 
fibroblasts. This allows the proliferation and migration 
of keratinocytes, thus stimulating wound re-epitheliza-
tion and closure [15, 16]. Moreover, IL-6 also induces 
VEGF expression in macrophages, fibroblasts, and kera-
tinocytes, which allows for the vascularization of the 
repaired tissue [14, 17]. However, a prolonged inflamma-
tory microenvironment in a wound, increases leukocyte 
and matrix metalloproteinase activity, hence, impairing 
the healing process. The transition from an inflamma-
tory state to a proliferative state plays a crucial role in 
determining the outcome of wound closure, and chronic 
wounds are associated with an inability to overcome the 
inflammatory phase of wound healing [18–20].

Most researchers studying EB physiopathology utilize 
patient’s serum [14, 21] or cells grown from tissue biop-
sies [13]. Although many articles have shown that these 
samples successfully recreate some of the molecular and 
physiological parameters observed in RDEB [22–26], 
there are currently no efficient models to study this dis-
ease in vitro in the context of chronic wounds. The lat-
ter is a consequence of RDEB patients suffering from 
extreme skin fragility and neuropathic pain [27–29], 
restricting the availability of skin or wound biopsies for 
research purposes. Hence, there is an urgent need to 
identify models that allow a more accurate representa-
tion of RDEB wound healing in vitro.

Recent work of ours has shown that RDEB wound 
dressings contain viable host cells that can be utilized for 
in vitro studies [30]. Understanding whether this method 
of sample collection can differentiate primary cells 
derived from a pro-inflammatory and pro-fibrotic micro-
environment during repeated cycles of wounding and 
healing will provide a non-invasive and relatively simple 
approach to study RDEB. In this report, we character-
ize and further explore the use of adherent cells isolated 

Conclusions Our results show that in vitro cultured RDEB-CW fibroblasts maintain distinctive cellular and molecular 
characteristics resembling the inflammatory and fibrotic microenvironment observed in RDEB patients’ chronic 
wounds. This work describes a novel, non-invasive and painless strategy to obtain human fibroblasts chronically 
subjected to an inflammatory and fibrotic environment, supporting their use as an accessible model for in vitro 
studies of RDEB wound healing pathogenesis. As such, this approach is well suited to testing new therapeutic 
strategies under controlled laboratory conditions.
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from RDEB chronic wound dressings as an in vitro model 
of wound chronicity.

Results
General characterization of cells isolated from RDEB 
patient’s chronic wound dressings
In this study, we used adherent cells with fibroblast-like 
morphology isolated from discarded dressings com-
ing from chronic RDEB patients’ wounds, previously 
described in [30] and referred here as to RDEB-CW 
hereon (see Materials and Methods). Chronic wounds 
were defined as wounds that were open for more than 1 
year at the time of dressing sampling, and remained open 
for at least 3 months after the sampling date. In order to 
characterize these cells and evaluate their potential to 
become an in vitro model of RDEB wound healing, we 
compared them with fibroblasts derived from skin biop-
sies, either from RDEB patients or from healthy donors. 
These fibroblasts were used as controls and are referred 
as to RDEB fibroblasts or normal human fibroblasts 
(NHF), respectively. Altogether, there were 6 samples 
from RDEB-CW from 3 patients, 3 samples of RDEB-
AW from 2 patients, 4 skin biopsies from unaffected 
RDEB skin, and 7 samples from normal skin (Table  1). 
We did not obtain paired samples between the RDEB, 
RDEB-AW, and RDEB-CW groups. Western blot analysis 
(WB) confirmed the strong reduction of C7 protein in all 
RDEB samples (Fig.  1a, b), either coming from biopsies 
or wounds, as expected for samples derived from RDEB 
patients.

The isolation of cells from discarded wound dressings 
allows the enrichment of adherent cells in culture. Dif-
ferent populations of both adherent and non-adherent 
cells can be extracted from these dressings, such as fibro-
blasts, corneocytes, immune cells, mesenchymal stem 
cells (MSC), fibrocytes, among others [30]. To character-
ize the cell lineage from which RDEB-CW adherent cells 
were derived, we utilized different cell markers [31–33] 
and analyzed their expression profiles by indirect immu-
nofluorescence (IIF). All six separate RDEB-CW samples 
were composed of adherent cells showing a positive sig-
nal for fibroblast activating protein (FAP, a type II ser-
ine protease expressed in fibroblasts and not detected 
on fibrocytes) [31] and vimentin, both being common 
markers distinguishing fibroblasts (Fig.  1c) [34]. On the 
other hand, these cells show no expression of CD45 pro-
tein, a common antigen expressed in white blood cells, 
as well as fibrocytes [31, 32] (Fig.  1c). Positive controls 
for CD45 (THP-1 cells) and negative controls for all the 
used markers are depicted in Supplementary Fig. 1a and 
b. Taken together, all these analyses indicate that RDEB-
CW adherent cells correspond to a cell lineage consistent 
primarily with being fibroblasts, thus, from now on these 
cells will be referred in the text as RDEB-CW fibroblasts.

In culture, RDEB-CW fibroblasts exhibited an enlarged 
cell area when compared to NHF and RDEB fibroblasts 
isolated from uninvolved skin (Fig.  1d, e). Also, in con-
trast to the normal spindle-like morphology of fibro-
blasts, RDEB-CW displayed an increased number of 
cell protrusions (Fig. 1f ), suggesting an activated state of 
these fibroblasts [35]. The latter indicates that RDEB-CW 
fibroblasts maintain a chronicity-associated phenotype 
even when cultured in vitro under controlled conditions.

In order to determine whether the distinct RDEB-CW 
phenotype observed in culture results from the method 
of isolation, we compared RDEB-CW fibroblasts with 
fibroblasts derived from acute wounds (RDEB-AW, 
wounds than were opened for less than 8 weeks, see 
Materials and Methods). We showed that RDEB-AW 
fibroblasts displayed a phenotype similar to fibroblasts 
derived from RDEB patients skin biopsies (Fig.  1, d-f ), 
suggesting that the cell morphology differences observed 
in RDEB-CW fibroblasts are not due to the cell harvest-
ing method.

Functional analyses in RDEB-CW fibroblasts
Flat and enlarged cell morphology, and an increased 
number of cell protrusions are well described features of 
senescent fibroblasts [35, 36]. Thus, we assessed whether 
RDEB-CW fibroblasts exhibit features of a senescent 
phenotype. β-galactosidase staining is a widely used 
marker for measuring cellular senescence both in vitro 
and in vivo [36, 37]. Our results indicate that NHF and 
RDEB fibroblasts displayed senescent populations of 
around 10%, which is in agreement with previous obser-
vations (Fig.  2a, b) [36–38]. In contrast, RDEB-CW 
fibroblasts exhibited a 2-fold increase in senescent cells 
compared to NHF and RDEB fibroblasts. In line with the 
previous results, we observed that senescent fibroblasts 
(β-gal+ cells) exhibited an increased cell area compared to 
β-gal- cells, independent of the fibroblast culture condi-
tion analyzed (Fig. 2c). We did not observe significant dif-
ferences between groups when we compared the β-gal+ 
cells or the β-gal- cells, suggesting that the morphology 
differences associated to RDEB-CW fibroblasts is likely 
due to an increased senescent population.

Lamin B1 protein has also been studied as a marker for 
cell senescence, where the loss of its nuclear localization 
is correlated with cells entering a senescent phase [39]. 
Interestingly, we found a loss of the nuclear localization 
of LaminB1 in RDEB-CW fibroblasts (Fig.  2d and Sup-
plementary Fig. 2). Taken together, these results suggest 
that repeated cycles of wounding and healing associated 
to chronic wounds could affect the senescent status of 
fibroblast populations isolated from these wounds, and 
that this phenotype can be further maintained under in 
vitro culture conditions.
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Population doublings is an important factor contrib-
uting to cell senescence under in vitro conditions [40, 
41]. Thus, an obvious consideration when comparing 
cell morphologies from different sources is the number 
of doublings in culture. In our study, all cells investi-
gated were coming from low culture passages. However, 
to exclude the possibility that RDEB-CW fibroblasts 

became senescent during cell isolation and cultur-
ing, we compared the number of viable cells initially 
obtained from chronic and acute wound dressings. No 
difference in number of cells (adjusted to wound size) 
were observed between RDEB-AW and RDEB-CW cells 
(Supplementary Fig.  3), suggesting that the senescent 

Fig. 1 General phenotypic characterization of RDEB-CW cells. (a) Western blot of protein lysates derived from fibroblast cultures confirms the C7 de-
ficiency in all samples coming from RDEB patients used in this study, with its respective densitometric analysis in (b). (c) Representative IIF images show-
ing molecular markers for fibroblasts (FAP, vimentin) and white blood cells (CD45). Nuclei were co-stained with DAPI. Bar: 100 μm. (d-f) Representative 
bright field images of NHFs, RDEBs, RDEB-CWs and RDEB-AWs fibroblast cultures used for morphological evaluation. Black arrows indicate cell protrusions. 
The morphological parameters analyzed were cell area (e) and the mean protrusions per cell (f). For the quantitative analysis in (e-f), a total of 75 cells 
were used for each condition (225 cells per experimental group). Bar: 100 μm. All data are expressed as mean ± SD. All these experiments were performed 
with n = 3–4 per condition. Asterisks indicate significant differences by one-way ANOVA with Tukey post-hoc (p < 0.05)
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phenotype of RDEB-CW fibroblasts is not a consequence 
of the isolation and cell culture procedure.

After wounding, dermal fibroblasts actively start pro-
liferating and migrating into the wound bed, constituting 
a key event in wound healing [42]. Thus, we investigated 
whether these processes were affected in RDEB-CW 
fibroblasts in vitro. Our results indicated that RDEB-
CW fibroblasts displayed a reduced proliferative rate 
compared to NHF by a Cell Titer-Blue® assay, meanwhile 
RDEB fibroblasts showed no significant differences com-
pared to the control group (Fig.  2e). These results were 
complemented by an IIF analysis, using the prolifera-
tion marker Proliferating cell nuclear antigen (PCNA), 
where we found similar results to those obtained by the 
fluorometric technique (Supplementary Fig.  4a, b). Fur-
thermore, RDEB-CW fibroblasts displayed slower wound 
closure compared to NHF (Fig.  2f-g). RDEB fibroblasts 

also exhibited a mild, but significant, decrease in migra-
tion potential. Similar results were obtained when this 
assay was carried out in low-serum condition (0.5% fetal 
bovine serum) and using an anti-proliferative agent (5 
µM Cytosine β-D-arabinofuranoside, ARAC), indicating 
that these defects are not affected by the different pro-
liferative rates observed between the three experimental 
groups (Supplementary Fig. 5).

Fibrotic marker assessment of RDEB-CW fibroblasts
A decrease or complete absence of C7 is the primary 
deficit of RDEB patients and it has been associated with 
an impaired remodeling and deposition of ECM proteins, 
triggering the development of a profibrotic environ-
ment on RDEB patient skin and wounds. Furthermore, 
increased levels of ECM proteins have been related to 
disease severity and a high risk for developing cSCCs, 

Fig. 2 Functional characterization in RDEB-CW fibroblasts. (a-c) Representative bright field images of fibroblast cultures stained with the senes-
cence associated β-galactosidase marker. β-Gal + cells were delimited with a dashed blue line. The quantification of β-Gal + cell population and the 
measurement of the cell area for β-Gal + and β-Gal- cells are depicted in (b) and (c), respectively. For the quantitative analysis in (b), a total of ~ 4000 
cells were used per condition. For the quantitative analysis in (c), a total of 50 cells were used for each condition (150 cells per experimental group). Bar: 
100 μm. (d) Representative fluorescence images of fibroblast cultures stained with Lamin B1 (red), and counterstained with DAPI (blue). Bar: 100 μm.  (e) 
Fluorescence-based proliferation assay (Cell Titer Blue ®) assessed every 24 h during 72 h.  (f) Representative brightfield images of 2D migration assay. Bar: 
100 μm. (g) Quantification of migration rate, expressed as percentage of the initial wound area. All data are expressed as mean ± SD. All these experiments 
were performed with n = 3–4 per condition. Asterisks indicate significant differences by one-way ANOVA with Tukey post-hoc (p < 0.05)
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the primary cause of death in this patient population [5, 
43–48]. With this information in mind and our previ-
ous results, we hypothesized that RDEB-CW fibroblasts 
exhibit a unique phenotype under in vitro culturing con-
ditions whichx| could be used as a model to study the 
development of fibrosis and resulting pathologies.

Fibrotic fibroblasts have an increased capacity to 
secrete and interact with ECM proteins, and are known 
to have an enhanced contractile phenotype in a three-
dimensional fibrous collagen network [25, 27]. Hence, 
we decided to study the fibrotic potential of RDEB-CW 
fibroblasts. We carried out a collagen disc contraction 
assay, where we demonstrated the increased contrac-
tile behavior of RDEB-CW cells (Fig. 3a, b). As control, 
we included RDEB fibroblasts which have been shown 
to possess an enhanced ability to contract collagen lat-
tices under in vitro conditions compared to NHF [49, 
50]. Interestingly, RDEB-CW fibroblasts contractility was 
greater than RDEB fibroblasts at all evaluated times.

Next, we studied the expression of fibrotic biomarkers 
previously shown to be increased in RDEB skin, such as 
alpha-smooth muscle actin (α-SMA) and type I collagen 
(C1) [47]. α-SMA, a protein associated with fibroblast-
myofibroblast transition and fibroblast activation [51], 
was increased at protein level (Fig. 3c, e) and enriched in 
stress fibers in RDEB-CW fibroblasts (Fig. 3h, i), where it 
is associated with actin filaments to exert its contractile 
functions [52].

Interestingly, no differences were observed in C1 pro-
tein abundance in RDEB-CW fibroblasts when studied by 
western blot analysis (Fig.  3d, f ). However, a noticeable 
increase in cytoplasmatic accumulation of this protein 
was seen by indirect immunofluorescence (Fig.  3h). We 
also assessed the expression of YKL-40 (Also known as 
CHI3L1), a collagen-binding glycoprotein mainly pro-
duced by cells of immune system as macrophages, neu-
trophils and cancer cells [53]. Fibroblasts can sense this 
protein and use it as a growth factor improving cell pro-
liferation, survival, cell-matrix interactions and deposi-
tion of ECM during wound healing [54–56]. Recently, 
Scotece et al. demonstrated that YKL-40 exhibited a 
sharp increase in skin in response to bleomycin treat-
ment [57], and it has also been previously related to the 
progression of several inflammatory and fibrotic skin 
diseases, including systemic sclerosis, dermatitis and 
pyoderma gangrenosum [58–60]. Additionally, Ho et al. 
(2014) demonstrated that a reduced population of pri-
mary dermal cells in culture (5–10% of total population) 
expresses YKL-40, but the expression was more wide-
spread when the cells were treated with oncostatin M, a 
cytokine related to IL-6 family [61]. Our results showed a 
significant increase in YKL-40 protein level in RDEB-CW 
fibroblasts compared with RDEB fibroblasts, which sup-
ports the advanced fibrotic state of the cells derived from 
chronic wounds (Fig. 3d, g).

Fig. 3 Functional and molecular markers of fibrosis in RDEB-CW fibroblasts. (a) Representative images of contracted collagen discs after 24 h of 
in vitro culture. The size decreased as the contractile capability of the fibroblasts increased. Bar: 1 cm. (b) Quantification of contractile assay based on 
collagen lattices (n = 3). We carried out a statistical analysis to compare the disc contraction between the different experimental groups at 0, 24, 48, and 
72 h. Asterisks (*) indicate significant differences versus NHF. Hashtags (#) indicate significant differences versus the RDEB group (p < 0.05, One-way ANOVA 
with Tukey post-hoc). (c-d) Western blot analysis of protein lysates derived from fibroblast cultures to detect the fibrotic markers α-SMA, C1 and YKL-40. 
(e-g) Densitometric analysis of western blots displayed in (c-d). Asterisks indicate significant differences (n = 3, one-way ANOVA with Tukey post-hoc). 
(h) IIF analysis of Collagen I (green) and α-SMA (red). Nuclei were co-stained with DAPI (blue). Bar: 100 μm. (i) Quantification of α-SMA+ cells, expressed 
as percentage. Fibroblasts were considered as positives for α-SMA specifically when this protein was localized to stress fibers (n = 3). Asterisks indicate 
significant differences (p < 0.05, One-way ANOVA with Tukey post-hoc). All data are expressed as mean ± SD.
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TGF-β pathway signaling assessment in RDEB-CW 
fibroblasts
As mentioned previously, there is a positive feedback 
loop between fibrosis and inflammation, which is espe-
cially deleterious in RDEB. Several studies have shown 
the dysregulation of TGF-β1 expression and downstream 
related proteins in cells derived from RDEB patients [47, 
49, 62]. Moreover, the activation of this TGF- β1 path-
way has been related to correlate with disease severity 
[63]. Due to this, we decided to further explore TGF-β1 
and the downstream signaling pathway in cells directly 
derived from patients’ wounds.

First, we analyzed the expression of proteins related to 
the TGF-β1 pathway in NHF, RDEB and RDEB-CW fibro-
blasts, including TGF-β1 and its receptor TGFBR-II, the 
TGF-β1 downstream effectors SMAD2/3, and the protein 
activator of TGF-β1, thrombospondin 1 (TSP1) [64]. Our 
western blot analysis showed an increased abundance 
of the TGF-β1 precursor protein in RDEB-CW fibro-
blasts (Fig. 4a, d), which results in the functional growth 
factor once it has been properly processed [65]. We did 
not detect significant changes in the TGFBR-II recep-
tor levels (Fig.  4a, d). We next analyzed the abundance 
and phosphorylation status of SMAD2/SMAD3 pro-
teins (Fig. 4b). We detected a significant increase in the 
abundance of p-SMAD2/p-SMAD3 proteins in RDEB-
CW fibroblasts compared to NHF and RDEB fibroblasts 
(Fig. 4d), but the levels of total SMAD2/SMAD3 showed 

no significant differences (Fig. 4b, d), which is consistent 
with that described for canonical activation of the TGF-
β1 pathway [66]. Furthermore, the TGF-β1 activator 
TSP1 was increased exclusively in RDEB-CW fibroblasts 
(Fig. 4c, d). Taken together, all these results indicate that 
the TGF-β1 pathway is highly activated in RDEB-CW 
fibroblasts, meanwhile RDEB fibroblasts, in our labora-
tory conditions, showed TGF-β1 activity levels similar to 
NHF cultures. Interestingly, no differences were observed 
between protein abundance and patient disease severity, 
suggesting that fibroblasts isolated from RDEB chronic 
wounds have common molecular characteristics surpass-
ing the overall patient disease burden.

Expression of inflammatory cytokines in RDEB-CW 
fibroblasts
We analyzed the abundance of two pro-inflammatory 
cytokines, IL-6 and IL-1β by reverse transcription quan-
titative PCR (RT-qPCR) analysis and flow cytometry 
assays simultaneously. We observed a significant increase 
on IL-6 gene expression in RDEB-CW fibroblasts but also 
a high degree of variability between samples from differ-
ent patients (Fig.  5a). This variability was also observed 
in IL-1β (Fig.  5b); however, no significant increase was 
found for this cytokine. Next, using a flow cytometry 
assay, we assessed RDEB-CW cells ability to secrete these 
cytokines, utilizing lipopolysaccharide (LPS, 1ug/ml) as a 
positive stimulus for secretion. Similar to our findings by 

Fig. 4 Analysis of TGF-β signaling in RDEB-CW fibroblasts. (a-c) Western blot analysis of protein lysates derived from fibroblast cultures to detect the 
immature form of TGF-β1 and its receptor, TGFβRII (a), the SMAD2/SMAD3 proteins and their phosphorylated forms (p- SMAD2/p-SMAD3) (b), and the 
TGF-β1 activator molecule, TSP1 (c). (d) Densitometric analysis of all western blots displayed in (a-c). All data are expressed as mean ± SD. The experiments 
were performed with n = 3–4 per condition. Asterisks indicate significant differences by one-way ANOVA with Tukey post-hoc (p < 0.05)
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RT-qPCR analysis, IL-6 secretion trended to increase in 
LPS-activated RDEB-CW fibroblasts (Fig.  5c), although 
no significant differences were observed between groups. 
On the other hand, IL-1β secretion was increased in basal 
and LPS-induced conditions in RDEB-CW fibroblasts 
compared to NHF fibroblasts (Fig. 5d), meanwhile RDEB 
fibroblasts showed no significant differences compared to 
the others groups with or without LPS treatment. Inter-
estingly, our results indicate that RDEB-CW fibroblasts 
did not show an increase in IL-1β secretion followed LPS 
treatment, which could indicate the pre-existence of an 
inflammatory state in these cells (mean of 16.17 ± 2.1pg/
ml in control condition, mean of 15.57 ± 1,6pg/ml in LPS 
treatment; p: 0.83 by Student T-test) (Fig. 5d).

We also evaluated the expression of three genes of the 
apolipoprotein B mRNA editing enzyme, catalytic poly-
peptide like type 3 (APOBEC3) family: APOBEC3A, 
APOBEC3B and APOBEC3H. APOBEC3 proteins are 

cytosine deaminases known to play a role in viral infec-
tion and inflammation [67–69], and these proteins have 
been shown to drive mutation acquisition in RDEB-asso-
ciated SCC [69]. Moreover, it has also been associated to 
the activity of IL-6 [70]. Of these three genes, only APO-
BEC3B was found to have increased expression in RDEB-
CW fibroblasts (Fig. 5e). We did not observe significant 
differences in APOBEC3H levels between the experimen-
tal groups (Fig. 5f ), and no detectable expression of APO-
BEC3A was found in any of the analyzed samples.

Discussion
RDEB-CW fibroblasts as an in vitro model of RDEB
Currently, there are limited cellular models that efficiently 
recreate the physiological and molecular parameters 
observed in RDEB wound healing in vitro. Nevertheless, 
primary fibroblasts derived from RDEB patient’s biopsies 
have been successfully cultured and studied showing the 

Fig. 5 Expression of inflammatory cytokines and cancer-related proteins in RDEB-CW fibroblasts. (a-b) Reverse Transcription (RT) qPCR analysis of 
inflammatory cytokines IL-1β and IL-6. Asterisks indicate significant differences by one-way ANOVA with Tukey post-hoc (p < 0.05, n = 4–5). (c-d) Cytokine 
analysis in supernatants of fibroblast cultures by flow cytometry, using the CBA cytokine kit for detecting IL-1β (c) and IL-6 (d). Disease severity is indicated 
for RDEB-derived patient samples (n = 2–3). Asterisks indicate significant differences by Kruskal-Wallis with Dunn’s multiple comparisons test (p < 0.05). 
(e-f) RT-qPCR analysis of two cancer-related genes APOBEC3B (e) and APOBEC3H (f). Asterisks indicate significant differences by one-way ANOVA with 
Tukey post-hoc (p < 0.05, n = 4–5). All data are expressed as mean ± SD, except for data shown in Figures (c) and (d)
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potential to model some of the physiological processes 
observed in these patients. However, reported data has 
shown that these cells exhibit a broad range of mor-
phological, migratory and proliferative properties, pos-
sibly attributed to differences in laboratory conditions, 
techniques, patient variability, and others. For example, 
Beilin et al. revealed that RDEB patient derived fibro-
blasts displayed an increased area and a more spread-out 
morphology than NHF [25], and in our results we show 
that RDEB and NHF presented similar morphological 
features. Additionally, Chen et al. reported that RDEB 
patient derived fibroblasts displayed a reduced prolifera-
tive potential compared to NHF or to RDEB fibroblasts 
expressing recombinant C7 [26]. However, in relation to 
proliferation rates, other authors have shown that RDEB 
patient’s derived fibroblasts displayed no significant 
changes compared to NHF [27–29]. Similarly, Condorelli 
et al. reported that RDEB fibroblasts displayed no sig-
nificant changes in migration assays in vitro, while Geor-
giadis et al. demonstrated that RDEB fibroblasts showed 
impaired migration potential compared to NHF or RDEB 
expressing recombinant C7 [27, 28]. In our study, we 
found that RDEB fibroblasts display no significant differ-
ences in proliferation nor migration compared to NHFs 
in vitro. On the other hand, our morphological and func-
tional analysis revealed that RDEB-CW fibroblasts exhib-
ited an increase in cell area and protrusions number, 
and also an impaired proliferation and migratory rate in 
vitro, reminiscent of the senescent phenotype observed 
in chronic wound-derived fibroblasts obtained from 
patients with venous leg ulcers [71]. Furthermore, we 
observed that RDEB-CW fibroblasts exhibit an increase 
in senescence associated β-galactosidase population, 
and a change in the subcellular localization of the Lamin 
B1 marker, which have been previously associated to be 
increased in senescent cells [34, 36, 39]. Previous studies 
indicated that low-passages primary fibroblast cultures 
displayed a senescent cell population of about 10% [38], 
which is consistent with the results we obtained for NHF 
and RDEB fibroblasts assessed by the senescence associ-
ated β-galactosidase marker. A previous study demon-
strated a clinical correlation between quantitative in vitro 
senescence and the time it takes the ulcerous tissue to 
heal, where populations of senescent fibroblasts over 15% 
were identified as the threshold beyond which a wound 
would become difficult to heal [72]. We found that 
RDEB-CW fibroblasts had a senescent population close 
to 20%; thus, increased senescence in the fibroblast pop-
ulation could explain some of the defects we observed at 
the level of proliferation and migration in vitro, and in 
wound healing in RDEB patients in vivo.

Interestingly, an increased senescent state has been 
described in cancer-associated fibroblasts (CAFs) [73–
75]. CAFs are known to secrete factors contributing to 

cell viability and modulating cancer progression. Con-
sidering that these patients have an increased risk of 
developing cSCC early in life, this in vitro model could 
potentially be a valuable tool for diagnostic studies 
associated to wound microenvironment, and also for 
the identification of new, early cSCC markers in RDEB 
patients.

Advantages and limitations of studying RDEB-CW 
fibroblasts.
In this work, we showed that fibroblasts cultured from 
discarded wound dressings maintain several hallmarks of 
a chronic wound, which could make this model a valuable 
asset in both research and diagnostic studies. For exam-
ple, we have shown that these fibroblasts produce more 
stress fibers and are capable of increased contraction of 
collagen matrices, which implies a higher fibrotic capa-
bility. This in turn could provide a manner to more accu-
rately assess the severity of the wound, as fibrosis is an 
indicator of wound severity and cSCC risk [76]. The lat-
ter extends to several other markers as well, for example, 
here we studied the expression of three APOBEC3 family 
proteins, which are known to be implicated in the forma-
tion of several types of cancer, including cSCC in RDEB 
patients [69, 70, 77]. Of note, APOBEC3 expression is 
likely more in important in keratinocytes, the cell of ori-
gin for RDEB cSCC but increases in expression could 
well represent a surrogate for levels of APOBEC within 
wounds. In our study, we showed a significantly increased 
expression of one APOBEC3 subunit (APOBEC3B) in 
RDEB-CW fibroblasts. Our observation, although new 
requires further work in order to determine its relevance 
for cSCC development. As cSCC in RDEB patients is a 
highly aggressive form of cancer, being able to differen-
tiate wounds that develop into SCC would greatly assist 
early detection and clinical management. In addition to 
measuring senescence, wound-derived fibroblasts could 
also be tested for skin age-associated markers, such as 
the production of reactive oxygen species, telomere 
length, among others [78]. More importantly, this par-
ticular method of culturing cells from wound dressings 
could not only be used to collect other cell types such as 
keratinocytes, but could also be expanded to study fibro-
cytes, macrophages and immune cells through the use of 
selective culturing and FACS [30]. In addition, this tech-
nology could also be beneficial to study wound micro-
environment in other, non-EB related diseases, such as 
pyoderma gangrenosum, ischemic skin lesions, dermati-
tis, psoriasis, diabetic and venous ulcers, as well as age-
related chronic wounds.

Despite the fact that our cell model has shown to have 
several interesting advantages for studying part of the 
RDEB physiopathology in vitro, it is necessary to be cau-
tious when comparing cell populations obtained with 
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different culturing strategies. In this study, we morpho-
logically and functionally compared RDEB-CW fibro-
blasts obtained from discarded wound dressings with 
fibroblast cultures obtained from skin biopsies from 
RDEB patients and healthy controls. One limitation of 
this study is the fact that skin fibroblast populations are 
heterogeneous. Previous findings have revealed the exis-
tence of different fibroblast lineages, each having specific 
functions according to their localization in the papillary 
or the reticular dermis [40, 79]. However, these stud-
ies have been limited because the lack of specific mark-
ers to differentiate between these two populations. Thus, 
the morphological, functional, and molecular analysis we 
carried out in this work represent an overview of pro-
cesses that could be studied in greater detail in the future. 
Additionally, in this work we focused on characteriz-
ing the level of activation/differentiation in low-passage 
fibroblast cultures, though it would be interesting to ana-
lyze whether RDEB-CW fibroblasts can retain this phe-
notype over time, in the absence of the pro-inflammatory 
and fibrotic microenvironment from which they were 
harvested.

Finally, our approach has the potential to reconstruct 
the history of a particular wound, as cells isolated at dif-
ferent time-points during wound progression could be 
isolated, characterized and compared. If combined with 
high throughput methods, these cells could potentially be 
a powerful tool to study the evolution of a wound from 
an acute to a chronic status, comparing the molecular 
signatures, physiological responses, ECM or cytokine 
secretion, morphological patterns, and others. Such a 
well-defined, controlled in vitro culture environment 
could provide a platform for studying mechanisms of 
wound healing as well as cancer detection and treatment.

Conclusions
Our results demonstrate that primary fibroblasts isolated 
from discarded dressings of RDEB chronic wounds reca-
pitulate multiple parameters of wound chronicity, and 
are a potentially useful research tool to study chronic 
wounds in vitro. Additional work with a larger sample 
size would be optimal to further confirm these findings 
in other RDEB populations with translation into clinical 
settings.

Methods
Cell samples
Adherent cells used in this work are part of the DEBRA 
Chile cell bank. Skin biopsies, either from healthy indi-
vidual donors or RDEB patients, were utilized to isolate 
and culture dermal fibroblasts. Adherent cells isolated 
from chronic wounds were obtained from discarded 
wound dressings and cultured as described in [30]. 
Wounds included in this study were part of a larger 

longitudinal follow-up study previously published [71]. 
Chronic wounds were defined as wounds that were 
opened for more than 1 year at the time of dressing sam-
pling, and remained opened for at least 3 months after. 
Acute wounds were sampled if present for > 14 days and 
all 3 acute wounds included in this study closed within 
6 weeks of dressing collection. Cells used for the experi-
ments are indicated on Table  1. Written informed con-
sent was obtained from each patient prior to sample 
collection. This study was approved by the Ethics Com-
mittee of Clínica Alemana Universidad del Desarrollo 
#2013 − 145.

THP-1 cells are a monocyte-like line derived from a 
leukemia patient (ATCC#TIB-202). Cells were growth in 
RPMI-1640 medium (Gibco, USA) containing 10% FBS 
and 2mM L-glutamine (Gibco, USA).

Cell morphology analysis
Five brightfield images, at a 40–60% confluency, were 
taken for each cell line. For each image, 15 cells were ran-
domly selected and the area and the protrusions number 
were measured using the Image J software (NIH, USA). 
Protrusions were considered to be any cell elongation 
larger than one third of the cell size, excluding the spin-
dle-like shape commonly seen in fibroblasts. A total of 
225 cells per experimental group were used for the quan-
titative analyses.

RNA extraction, complimentary DNA synthesis and 
quantitative PCR
RNA extraction was performed with TRIzol reagent 
(Invitrogen, USA), following the manufacturer’s guide-
lines. RNA integrity was confirmed through elec-
trophoresis using a MOPS/Formaldehyde gel. DNA 
contaminations were eliminated with DNAse I (Thermo 
Scientific) and complementary DNA (cDNA) was 
synthesized using the High Capacity cDNA Reverse 
Transcription kit (Applied Biosystems), according to 
manufacturer’s protocols.

Quantitative PCR (qPCR) was performed utilizing 
either the Brilliant III Ultra-Fast SYBR® Green QPCR 
Master Mix (Agilent Technologies, USA) and the SYBR 
Select Master Mix (Thermo Fisher Scientific, USA), 
according to the protocol specified by the manufactur-
ers. The qPCR reactions were carried out in a Stratagene 
Mx3005P (Agilent Technologies, USA). Data was pro-
cessed through the 2-ΔΔCt method [80]. Primers used in 
this study are shown in Supplementary Table 1.

Indirect Immunofluorescence
Cells were plated on 10 mm coverslips in 24-well plates 
until they reached ~ 80% confluence. Cells were fixed in 
4% formaldehyde solution, and then permeabilized with 
0.2% Triton-X100. Next, cells were blocked using a 3% 
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BSA solution. Primary antibodies were incubated over-
night at 4  °C, and secondary antibodies were incubated 
by 2  h at room temperature. Coverslips were mounted 
into glass slides with Fluoromount G with DAPI (Invitro-
gen, USA), and then sealed with commercial transparent 
nail polish. All the antibodies used in this study are listed 
in Supplementary Table 2.

Pictures were taken with the EVOS FL Cell Imaging 
System (Thermo Fisher Scientific, USA) or the Fluoview 
FV10i confocal microscope (Olympus, Japan). Images 
were analyzed using ImageJ software (NIH, USA).

Western Blot
Cell lysates were prepared on ice with radio immunopre-
cipitation assay buffer (RIPA, Cell Signaling Tech., USA) 
with proteinase inhibitors (Sigma-Aldrich, Merck, USA) 
and phosphatase inhibitor cocktail (SCBT, USA). Protein 
quantification was performed using Pierce™ BCA Protein 
Assay Kit (ThermoFisher, USA). Cell lysates were sepa-
rated on 7–10% SDS-polyacrylamide gels (SDS-PAGE) 
and transferred into nitrocellulose membranes (Bio-Rad, 
USA) via a semi-dry transfer (using Thermo Fisher’s Pow-
erBlotter XL kit). Membranes were blocked with 5% BSA 
for 1  h at room temperature and then incubated over-
night with the primary antibodies at 4  °C. Fluorescent-
conjugated secondary antibodies were incubated at room 
temperature for 1 h. The membranes were revealed using 
the Odyssey CLx Infrared Imaging System (LI-COR Bio-
sciences, USA). Images were quantified using ImageJ 
software (NIH, USA). All antibodies used in this study 
are listed in Supplementary Table  2. Rabbit polyclonal 
collagen VII antibody raised against the NC1 domain was 
used thanks to M. Peter Marinkovich, MD, Stanford Uni-
versity School of Medicine, Stanford, USA [81].

Cell proliferation assay
Fibroblasts were seeded at 1 × 104/cm2 density in black, 
polystyrene 96-well plates in quadruplicate, and a fluo-
rescence-based proliferation assay (CellTiter-Blue® Assay, 
Promega, USA) was carried out according to manufac-
turer’s instructions every 24  h over 3 days. Cells were 
grown in DMEM supplemented with 10% FBS, and 2  h 
prior to obtaining fluorescence readings, culture medium 
was replaced by phenol red-free, FBS-free DMEM, and 
CellTiter-Blue® Reagent was added. Fluorescence was 
analyzed at 580  nm in a Modulus™ Microplate Multi-
mode Reader (Turner Biosystems, USA).

2D migration assay
Fibroblasts were grown in DMEM supplemented with 
10% FBS until reaching a confluent monolayer. To register 
the same fields for each image acquisition, we traced ref-
erence lines in the plates with a tip marker. Cell cultures 
were scratched with a 200 µl sterile pipette tip, and then 

the plates were washed with PBS to discard detached 
cells. Transmitted light camera images were obtained 
immediately after scratch induction, and then after 8 and 
24 h in culture. We determined the wound area using the 
method and Image J plugin developed by Suarez-Arnedo 
et al. [82]. Results were expressed as mean wound area (% 
of initial wound area).

Collagen disc contraction assay
Cell contractility assays were carried out according to 
protocol described by Ngo et al. [83], as floating matrices 
[84]. Briefly, 100,000 fibroblasts were seeded in a type-I 
collagen solution (rat tail Collagen I, sc-136,157, SCBT, 
USA) diluted in DMEM (collagen-I in a final concentra-
tion of 1  mg/ml) supplemented with 10% FBS, and col-
lagen matrix was allowed to polymerize by adding 2  µl 
NaOH 1 M (500 µl of cell suspension per well in 24-well 
plates). Then, 400  µl of complete culture medium was 
added to each well, and the gel was gently dissociated 
from the plate using a 200 µl pipette tip. The gel contrac-
tion was documented through capturing daily digital 
images for 3 days, and results were expressed as mean 
disc area (% of initial disc area).

Senescence-associated β-galactosidase staining
Senescence-associated β-galactosidase staining kit (Cell 
signaling, USA) was carried out according to manufac-
turer’s instructions. Briefly, fibroblasts were grown in 
DMEM supplemented with 10% FBS until reaching a 
confluence of 80–90%. Then, plates were rinsed with PBS 
and fixed, and the β-Galactosidase Staining Solution (pH 
6,0) was added. Plates were sealed and incubated over-
night in a dry incubator (37° C). Transmitted light cam-
era images were obtained immediately after incubation. 
We determined the percentage of β-galactosidase posi-
tive cells (~ 4000 cells per condition) and the cell area (50 
cells per condition) from 20 random fields per condition 
(4X objective).

Quantification of subcellular distribution of lamin B1
In order to quantify the subcellular distribution of Lam-
inB1, we obtained fluorescence images of fibroblast cul-
tures stained with LaminB1 and co-stained with DAPI 
(~ 150 cells per experimental group were analyzed). The 
cells were classified into four different conditions for fur-
ther analysis: nuclear distribution, nuclear and cytoplas-
matic distribution, cytoplasmatic distribution or none 
detected. A χ2 analysis was carried out to compare the 
distribution of Lamin B1 subcellular localization between 
the different experimental groups.

Cytokine analysis in supernatant by flow cytometry
Fifty thousand fibroblasts were seeded in DMEM with 
10% FBS and incubated for 24 h. Afterwards, the media 
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was replaced by phenol red-free and FBS-free DMEM 
with or without LPS 1 ug/ml and incubated for 24  h 
before collecting the supernatants. IL-6 and IL-1β levels 
in the supernatant were measured by the BD™ FACS-
Canto Flow Cytometer and BD™ Cytometric Bead Array 
(CBA) Human Inflammatory Cytokines Kit (BD Biosci-
ences, USA). The detailed experiment procedure was 
conducted according to the instruction manuals of the kit 
and the flow cytometer. The sensitivity for IL-6 and IL-1β 
measurement were 3.6 pg/ml and 7.1 pg/ml in this assay, 
respectively.

Statistical analysis
Quantitative data were presented as mean ± S.D. Com-
parisons between groups, plot design and statistical anal-
ysis were performed with GraphPad Prism 7.0 (GraphPad 
Software Inc., USA). Significant differences were ana-
lyzed by one-way ANOVA with a Tukey post-hoc, unless 
another analysis has been indicated for a specific assay. A 
p value < 0.05 was considered significantly different.
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