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Abstract 

Background:  Diabetes mellitus (DM) has glucose variability that is of such relevance that the appearance of vascular 
complications in patients with DM has been attributed to hyperglycemic and dysglycemic events. It is known that 
T1D patients mainly have glycemic variability with a specific oscillatory pattern with specific circadian characteristics 
for each patient. However, it has not yet been determined whether an oscillation pattern represents the variability of 
glycemic in T2D. This is why our objective is to determine the characteristics of glycemic oscillations in T2D and gener‑
ate a robust predictive model.

Results:  Showed that glycosylated hemoglobin, glycemia, and body mass index were all higher in patients with T2D 
than in controls (all p < 0.05). In addition, time in hyperglycemia and euglycemia was markedly higher and lower in 
the T2D group (p < 0.05), without significant differences for time in hypoglycemia. Standard deviation, coefficient of 
variation, and total power of glycemia were significantly higher in the T2D group than Control group (all p < 0.05). The 
oscillatory patterns were significantly different between groups (p = 0.032): the control group was mainly distributed 
at 2–3 and 6 days, whereas the T2D group showed a more homogeneous distribution across 2–3-to-6 days.

Conclusions:  The predictive model of glycemia showed that it is possible to accurately predict hyper- and hypo‑
glycemia events. Thus, T2D patients exhibit specific oscillatory patterns of glycemic control, which are possible to 
predict. These findings may help to improve the treatment of DM by considering the individual oscillatory patterns of 
patients.
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Introduction
Diabetes mellitus (DM) can be classified as type I DM 
(T1D) and type II DM (T2D) according to its etiology 
[1]. Public spending associated with DM in the United 
States reached $237 billion in 2017, and approximately 
1.6 million deaths were reported in 2016 because of DM, 
which is now the seventh leading cause of death world-
wide [2, 3]. Sustained hyperglycemia is associated with an 

increased risk of both micro-and macrovascular compli-
cations and can lead to retinopathy, kidney failure, stroke, 
and even lower limb amputation [2–5]. Measurement of 
glycosylated hemoglobin (HbA1c) is a standard method 
to monitor average blood sugar levels in patients with 
DM during the previous 2–3 months and has the poten-
tial to predict the risk of long-term DM complications 
[6–9]. However, because HbA1c is a long-term metric 
associated with the life-span of red blood cells, it does 
not accurately reflect intraday oscillations in glycemic 
control (dysglycemia [higher and lower levels of glucose 
during the day and night phases]), which are very rele-
vant for the vascular complications of DM [10, 11].
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Type 2 DM is characterized by hyperglycemia, 
increased HbA1c, and overweight [12, 13]. Importantly, 
it has been proposed that the early detection of dysgly-
cemic episodes (acute and chronic glucose excursions) 
might help improve outcomes in patients with DM [14, 
15]. Nevertheless, while T2D can be treated with diet, 
exercise, and medication, there is no accurate classifica-
tion of glycemic oscillations in patients with T2D. Pro-
spective studies have demonstrated that dysglycemias 
can precede a diagnosis of DM by months to years, [16, 
17] and the correct identification and classification of gly-
cemic oscillations during the day and night phases could 
guide early treatment, which may have important impli-
cations for preserving endogenous insulin secretion and 
preventing T2D complications [18].

Continuous glucose monitoring (CGM) provides real-
time glucose measurements, allowing for the reliable 
determination of hypoglycemia/hyperglycemia episodes 
and, consequently, glycemic variability over several days, 
weeks, or even months [19, 20]. We recently character-
ized and classified glycemic oscillations in patients with 
T1D through CGM [15], finding that glycemic variability 
has different oscillatory patterns that are not entirely sto-
chastic and exhibit circadian rhythmicity [21, 22]. As far 
as we know, there is no accurate classification of glycemic 
oscillations in T2D. Accordingly, the present study aimed 

to determine the characteristics of glycemic fluctuations 
in T2D and test whether they could be predicted over 
time in patients.

Results
Baseline characteristics of participants
The baseline characteristics of the study groups are 
described in Table  1. No significant differences were 
found in age, weight, or height between groups; however, 
BMI was significantly higher in the T2D group than in 
the control group. Based on the BMI, patients in the T2D 
group were classified as overweight (cut off > 25  kg/m2) 
[29]. The different insulin drugs used by the T2D group 
(rapid-acting insulin, long-acting insulin, and other 
hypoglycemic drugs) are also shown in Table 1.

Glycemic characteristics and stochastic/deterministic 
glycemic variability patterns
Concomitants with overweight, glycemia, and HbA1c 
levels were significantly greater in the T2D group than in 
the control group during the day and night phases (aver-
age between day and night, p < 0.001) (Fig. 1A, B).

Figure  1C shows the two study groups’ time in eug-
lycemia, hyperglycemia, and hypoglycemia. The T2D 
group spent significantly less time in euglycemia than 
the control group (p < 0.0001), whereas the opposite was 

Table 1  Baseline characteristics of individuals with T2D and controls

Data are shown as mean ± standard deviation (SD). BMI body mass index. Bold letters denote significant differences (p < 0.05) between groups

Control n = 28 (53.84%) T2D n = 24 (46.15%) P-value

Age (years) 64.66 ± 18.31 69.96 ± 11.50 0.224

Weight (kg) 70.52 ± 7.25 71.21 ± 9.43 0.189

Height (m) 1.69 ± 0.08 1.62 ± 0.08 0.051

BMI (kg/m2) 24.59 ± 2.04 27.08 ± 4.73 0.013
Duration of diabetes (years) – 32.25 ± 10.52 –

Rapid-acting insulin

 Novorapid – n = 2 (8.33%)

 Humalog – n = 4 (16.66%)

 Actrapid – n = 3 (12.50%)

Long-acting insulin

 Lantus – n = 13 (54.16%)

 Tresiba – n = 0

 Toujeo – n = 0

 Levemir – n = 1 (8.33%)

 Insulatard – n = 13 (54.16%)

Other hypoglycemic drugs

 Metformin – n = 15 (62.5%)

 Minidiab – n = 1 (4.16%)

 Janumet – n = 2 (8.33%%)

 Glibenclamide – n = 1 (4.16%)

 Januvia – n = 10 (41.66%)
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observed for the time in hyperglycemia (p < 0.0001). No 
difference between groups was found for the time in 
hypoglycemia (p = 0.628).

Dickey-Fuller test revealed that 62.5 and 37.5% of T2D; 
and 74.1 and 25.9% of control participants displayed a 
stationary (deterministic) and non-stationary (stochas-
tic) glycemia oscillatory variability, respectively (Fig. 1D). 
However, the differences were not significantly different 
(Chi-squared: 3.84; p = 0.46).

Glycemic variability in patients with T2D
Glucose variability assessed through the SD and CV 
indices of the CGM data is shown in Fig.  2. In contrast 
to the control group, the T2D group displayed a marked 
increase in both SD and CV (SD, p < 0.0001; and CV, 
p < 0.01, T2D vs. control, respectively) (Fig. 2A, B).

In addition to the traditional glycemic variability indi-
ces (SD and CV), we used FFT to determine the glycemic 
oscillatory pattern in patients with T2D. Results showed 
that the total power of glycemia was significantly higher 
in the T2D group than in the control group (p < 0.0001) 
(Fig.  2C, D). In addition, from the CGM data, we 

observed that the maximum phase glycemia oscillation 
varied from 2 to 6 days (Fig. 2C–E).

Our analysis revealed that the distribution of oscil-
lation days (360º) was significantly different between 
groups (Chi-squared: 9.15; p = 0.032). The control group 
was mainly distributed at 2–3 and 6  days, whereas the 
T2D group showed a more homogeneous distribution 
across 2–3 -to 6 days (Fig. 2E).

The predictive model of hyperglycemia and hypoglycemia 
in patients with T2D
We recently developed a predictive model to determine 
maximum and minimum glycemic oscillations and the 
hour of the day at maximum and minimum glycemic 
oscillations in patients with T1D [15]; given that patients 
with T2D display different oscillatory days, we used the 
same model to test whether it could apply to T2D. Our 
data indicated that it was possible to predict hyperglyce-
mia (p < 0.001) and hypoglycemia (p < 0.001) in patients 
with T2D (Fig. 3A, B left panel, respectively). The errors 
followed a normal distribution for both hyperglyce-
mia (W = 0.95; p = 0.57) and hypoglycemia (W = 0.93; 

Fig. 1  Glycemic status in patients with type 2 diabetes and control participants. A Circadian rhythm and oscillatory pattern of glycemia in patients 
with T2D and control participants. B HbA1c values in T2D patients and Control participants; C time at the stage of glycemic control (euglycemic, 
hyperglycemic, and hypoglycemic). The prevalenceence of stationary and non-stationary glycemic variability patterns, was determined through the 
Dickey-Fuller test. ***, p < 0.001; ****, p < 0.0001. Control, n = 24; T2D, n = 28
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p = 0.30) (Fig.  3A, B right panel, respectively). In addi-
tion, the model was able to predict the hour in which the 
hyperglycemia (p < 0.001) and hypoglycemia (p < 0.001) 
occurred (Fig. 3C, D right panel, respectively). The time 
at which hyperglycemia and hypoglycemia occurred 
showed a normal distribution (W = 0.95; p = 0.49; and 
W = 0.97; p = 0.94, for hyperglycemia and hypoglycemia 
events, respectively) (Fig. 3C, D right panel, respectively).

Discussion
The main aim of our study was to determine the char-
acteristics of glycemic oscillation in patients with T2D 
patients and, if possible, predict dynamic glycemic varia-
bility over time. The principal results of our work were: (i) 
patients with TD2 have higher daily levels of HbA1c and 
glycemia; (ii) glycemic variability is greater in patients 

with TD2 than in controls; (iii) days of glucose oscillation 
are homogeneously distributed across six days in patients 
with T2D, and (iv) it is possible to predict the day time 
and magnitude of hyper- and hypoglycemic events in 
patients with T2D. Our finding that patients with T2D 
exhibit specific and predictable glycemic oscillatory pat-
terns might have relevance for improving drug delivery 
and treatments related to glycemic control in T2D (i.e., 
insulin delivery, daytime physical exercise as treatment, 
among others).

It is well known that T2D pathophysiology is closely 
related to overweight and obesity [30, 31]. Estimations 
from the World Health Organization show that nearly 2 
billion adults have overweight or obese [32], and between 
50.9 and 98.6% of patients with T2D in Europe and 56.1% 
in Asia are obese [33]. Our data show that patients with 
T2D have overweight (assessed through BMI), which 

Fig. 2  Glycemic variability in T2D patients. A, B Measurement of glycemic variability indices in patients with T2D and controls: SD, standard 
variation; CV, coefficientvariationtion. C Representative reconstruction from inverse Fast-Fourier Transform (IFFT) of maximum energy glycemic 
oscillation and real oscillation of glycemia at 2, 3, 4, 5, and 6 days, and D Total power. E Prevalence of maximum energy oscillation of glycemia in 
patients with T2D and controls. **, p < 0.01; ****, p < 0.0001. Control, n = 24; T2D, n = 28
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is accompanied by higher values of HbA1c, daily glyce-
mia, and glycemic variability. Hyperglycemia in T2D 
can result from insulin resistance, lower insulin secre-
tion, and/or reduced β-cell mass [34]. Of note, hypergly-
cemia is related to high glycemic variability [26]. While 
our results show that patients with T2D have higher 

sustained levels of glycemia and glycemic variability, we 
cannot discard the role of overweight per se on glyce-
mic variability, as all patients displayed overweight and 
were diagnosed with T2D. The distinction between those 
variables was beyond the scope of our study, and future 
research needs to examine this critical point.

Contrary to our observations in T1D [15]. The present 
data reveal that glycemic oscillation was predominantly 
stationary (deterministic) in T2D but without significant 
differences between patients with T2D and controls. 
We previously showed that while patients with T1D dis-
played a predominance of stationary patterns, they were, 
nevertheless, different from those in control individu-
als [15]. These differences could be related to DM etiol-
ogy, but our experimental design could not explain this 
discrepancy. Our data indicate that patients with T2D 
mainly exhibit deterministic behavior, suggesting that 
glycemic patterns could be predicted, similar to T1D 
[15, 35, 36]. Our data also reveal that patients with T2D 
show a marked increase in HbA1c, which has been asso-
ciated with hyperglycemia but not glycemic variability. 
Indeed, although we have found a parallel increment of 
HbA1c and glycemic variability (SD, CV, and total power 
of glycemic oscillations) in T1D [15] and T2D (present 
data), it has been proposed that glycemic variability could 
be independent of HbA1c [37, 38]. In addition, HbA1c 
is thought not to be a robust measure of glycemic vari-
ability associated with hyper- and hypoglycemia events 
during the day and night phases [15, 37–39]. Therefore, 
while HbA1c is a classical clinical measure of long-term 
glycemic status and aids in diagnosing DM, it will likely 
be necessary to incorporate new analyses and measures 
considering circadian rhythms, to improve the personal-
ized treatments against T2D.

Our results revealed that the distribution of oscilla-
tion differed between the groups. We observed that 
patients with T2D showed a homogeneous distribution 
across 2 to 6  days, which was different from the con-
trol group, which exhibited a heterogeneous distribu-
tion concentrated at 2–3  days and six days. Thus, our 
FFT-based mathematical apparently could discriminate 
between circadian and non-circadian oscillators. Nev-
ertheless, considering the origin of our model, this is 
classified as a “closed loop,” which limits the extrapola-
tion of our results. Similarly, the UVA/Padova system 
[40], although using machine learning and artificial 
intelligence, has reported similar limitations associated 
with long-term extrapolation. However, despite this 
limitation, our present data and our previous results 
[15], it is possible to propose that in the context of 
DM, the circadian rhythm of glycemic control becomes 
more evident, making it possible to predict regardless 
of etiology. Alterations in circadian rhythms might 

Fig. 3  The predictive model of maximum and minimum glycemia 
oscillation in T2D patients. A, B (left panel) Scatterplot of real 
maximum and minimum glycemia (respectively) and predicted 
maximum and minimum glycemia (respectively); (right panel) 
error distribution of the model for maximum and minimum 
glycemia, respectively. The distribution of the error complies with 
the assumption of normality. C, D (left panel) Hour of maximum 
and minimum predicted glycemia (respectively); (right panel) error 
distribution of the model for an hour of maximum and minimum 
glycemia (respectively)
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contribute to the pathogenesis of T2D [41, 42]. Gabriel 
et  al. (2021) recently proposed that circadian rhythms 
are generated by a self-regulating feedback loop of acti-
vators and transcriptional repressors. Along this line, 
clarifying whether alterations of the circadian rhythm 
of some "clock genes," which could be associated with 
metabolic dysfunction in T2D and defining, for exam-
ple, alterations in mitochondrial physiology, might be 
relevant to mechanistically determine the role of circa-
dian rhythm on glycemic control in T2D [44]. Indeed, 
bidirectional communication between mitochondrial 
function and rhythmic gene expression has been identi-
fied and is altered in T2D [43]

Strengths and limitations
The main strengths of the study are as follows: we deter-
mined that the glycemia signal in T2D exhibits a station-
ary pattern with homogeneous distribution across 2 to 
6 oscillation days, and we tested a predictive model to 
assess hyper- and hypoglycemia and the hour at which 
these events occur in T2D patients. These findings may 
contribute to optimizing health spending associated 
with this pathophysiological condition, as there are criti-
cal hours where hyper- and hypoglycemia occur, which 
could be relevant to improving personalized therapies 
against T2D. One of the more important messages of this 
study is that it is possible to determine glycemic dynamic 
oscillations, which display characteristics of circadian 
patterns in T2D. However, deciding whether this circa-
dian oscillatory pattern is related to medications, insu-
lin delivery, and/or programmed physical exercise will 
be essential. In addition, our results do not dispose the 
possibility that glycemic oscillation could be secondary 
to poor glycemic control (i.e., elevated HbA1c). There-
fore, future studies focus on patients with high glycemic 
variability will separate the role of poor glycemic control 
from intrinsic glycemic variability on the disruption of 
the circadian rhythm. Another limitation is the sample 
size, which could negatively impact our results. Finally, 
we tested a model used in T1D [15], which could influ-
ence our results. Therefore, future studies should develop 
a model more in line with the physiology of T2D.

Conclusion
Based on CGM data, we found that patients with T2D 
exhibit a dynamic glycemic fluctuation with a spe-
cific oscillatory pattern showing circadian characteris-
tics. Considering that the glycemic oscillatory pattern 
was mainly stationary, this characteristic could help to 
develop new therapeutic strategies and/or create a system 
alert to improve the outcome of this critical population.

Materials and methods
Ethics
We performed a single-center retrospective study with 
28 adult controls and 24 patients with T2D. All partici-
pants signed an informed consent according to CIOMS 
Guideline #4 [23]. The study methods and experimental 
protocols were approved by the Ethical Committee of the 
Clinical Santa Maria, Santiago, Chile (approved #14) and 
were performed according to the principles of the Decla-
ration of Helsinki.

Study population
Fifty-two patients between 46 and 81  years of age were 
divided into two groups: 28 controls (53.84%) and 24 
patients with T2D (46.15%). An endocrinology specialist 
recruited patients from Clinical Santa Maria according 
to the following exclusion criteria: (i) gestational diabe-
tes; (ii) < 6 days of continuous blood glucose monitoring; 
(iii) < 18 years old; and (iv) female participants should not 
be in the first seven days of the follicular phase (v) no 
clinical records. The baseline characteristics of the par-
ticipants are listed in Table 1.

Intervention and procedures
CGM was performed using a glucose monitoring device 
(MiniMed iPro2), Medtronic Inc., Northridge, CA) with 
an Enlite sensor (both from Medtronic Inc., Northridge, 
CA), which consisted of a transmitter and receiver, and 
a disposable subcutaneous glucose sensor containing 
glucose oxidase, an enzyme that catalyzes the electro-
chemical reaction between glucose and oxygen, obtain-
ing an electric current in nanoamps [24]. The sensor was 
inserted under the skin of the non-dominant arm and 
was programmed for interstitial glucose measurement 
every 5 min.

Calibration and data collection
A calibration algorithm was used for the CGM system 
following the manufacturer’s guidelines. From continu-
ous recordings, HbA1c was determined according to the 
following formula: HbA1c % = (Avg glucose + 46.7)/28.7; 
after HbA1c mmol/mol = (10.93 * HbA1c %)—23.5, 
where Avg glucose is the arithmetic mean of the glu-
cose calculated over all the measurements from the 
CGM. Calculations were performed with CareLink iPro 
software (version 2.2.005, Northridge, CA) [25]. Inter-
stitial glucose measurements obtained after each hour 
were averaged, generating 24 data points per day across 
the six days of the study, and reported as mg/dL. Glu-
cose variability parameters were calculated using the 
standard deviation (SD) and the coefficient of variation 
(CV) indices [26]. The SD (from 6 days) was divided by 
the arithmetic mean (from 6 days) of the corresponding 
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glucose reading to determine the CV. Written instruc-
tions regarding food consumption times were provided 
to all participants. Food consumption times included 
breakfast (07:00–10:00 h), lunch (12:30–15:00 h), dinner 
(19:00–22:00  h) and post-dinner (22:30–00:00  h). The 
suggested caloric intake included (of total daily energy 
intake) 45–65% of carbohydrates, 15–20% of protein, 
and < 30% fat, in addition to 25–50  g/day of fiber [27]. 
Caloric intake was divided into breakfast, lunch, dinner, 
and post-dinner. To sure these instructions, we called 
every day to the patients aiming to remember all instruc-
tions/suggestions. In addition, we used a checklist to 
check every point. To determine the possible effects of 
pharmacological treatments in both groups, we assessed 
the prevalence of the main medications each patient 
received, considering that patients followed a scheme 
provided by the diabetes unit. Patients with T2D were 
administrated standard insulin before breakfast and 
ultrafast insulin before every food intake. The treatment 
was divided into three groups: rapid-acting insulin, long-
acting insulin, and other hypoglycemic drugs, repre-
sented with "n" and % in each experimental group. The 
patients did not receive any other medications that could 
affect glycemic control. All participants were strongly 
advised not to engage in or perform any physical exercise 
other than their daily work-home activities; however, the 
daily activities were not restricted.

Anthropometric variables and medical history
Selected patients were interviewed to assess their fam-
ily and personal history of metabolic and cardiovascu-
lar diseases and their self-care activities associated with 
glycemic control (glucose management, dietary control, 
and physical activity). After the interview, height (m) 
and body mass (kg) were measured to determine body 
mass index (BMI) (kg/m2). The prevalence of euglycemia, 
hyperglycemia, and hypoglycemia were determined in all 
experimental groups through CGM.

Glycemic oscillatory patterns
Based on previous studies, the circadian rhythm oscil-
lation of all patients was determined by the Fast Fourier 
Transform (FFT) algorithm to obtain frequency oscilla-
tory waves of glycemia [15]. For the present data struc-
ture, each blood glucose signal corresponds to 1,440 
data points (including all data points), and the missing 
data in the signal was replaced by the minimum energy 
oscillation reconstruction or extrapolation accordingly 
to the maximum energy oscillation. The FFT algo-
rithm was applied to obtain different frequencies, and 
the functions provided by the FFT (NUMPY package, 
Python Anaconda 3.6.6, 64-bit version; Python Soft-
ware Foundation, Amsterdam, The Netherlands) were 

used to calculate the power spectral density (PSD). 
Subsequently, the inverse FFT IFFTT) was used to 
verify the quality of the glycemic signal. Then, the fre-
quency with the highest power (over 15,000 a.u.) was 
selected based on the energy weight signal, and the 
other oscillation waves were discarded (< 24  h, ultra-
circadian oscillation). The total power of the signal and 
the frequency at the maximum PSD were plotted (cir-
cadian oscillation). To determine the incidence of dif-
ferent circadian oscillations in all participants, the data 
were divided into > 2 to < 3; > 3 to < 4; > 4 to < 5; > 5 to < 6; 
and 6 days to reach maximum oscillation. The analysis 
was performed using Python Anaconda 3.6.6, a 64-bit 
version.

Stationary/non‑stationary CGM analysis
The Dickey-Fuller test was used to determine the sta-
tionary and non-stationary patterns of glucose variabil-
ity from the time series provided by the CGM system, 
as described [15]. This test is a non-linear estimation 
and assumes that the data and the previous data point 
(delay time) are interdependent. The following formula 
was used to determine the stationary and non-station-
ary modes: yt = pyt-1 + ut. Where y is the glucose data, 
t is the time, and p is the constant coefficient associated 
with the autoregressive analysis. Stationary variables are 
defined as variables with no significant (p > 0.05) change 
in variance at any time. By contrast, non-stationary varia-
bles are defined as variables that change significantly over 
time (p < 0.05). We used R software (R-Project, Vienna, 
Austria) for analysis.

The predictive model of glycemia
Our predictive model resulted from the convergence of 
several successive steps to find the best linear model that 
shows higher and more robust adjustments [15]. There-
fore, our algorithm was applied as follows: i) Apply natu-
ral logarithmic transformation to the time of minimum 
and maximum glycemia; and ii) establish a linear regres-
sion between the minimum and maximum glycemia 
and minimum and maximum glycemic time and all FFT 
weights. The first 140 data points are used for adjustment 
and are randomly selected. This operation was repeated 
at least 40 times for each model to identify points that 
may cause problems in multiple adjustment models. The 
remaining data were used to calculate the fit of the final 
model. The best model was selected using the Akaike cri-
terion [28]. The non-significant variables were eliminated 
individually, leaving only the significant ones (p < 0.05). 
The analysis was performed using Python software, ver-
sion 3.8.1.
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Statistical analyses
Data are expressed as mean ± SD or 95% confidence 
interval (glycemic oscillatory pattern data). All data 
were subjected to normality (Shapiro–Wilk) and homo-
scedasticity (Levene) testing. Data were evaluated using 
an unpaired T-test (T2D vs. control) or analysis of vari-
ance (ANOVA), followed by the Holm-Sidak post- hoc 
test for CGM data analysis. Non-normal variables were 
evaluated using the Mann–Whitney test. To determine 
the distribution days, Chi-squared analysis was used. A 
p-value < 0.05 was considered statistically significant. All 
analyses were performed with GraphPad Prism 9.0 (La 
Jolla, CA, USA) and R software.
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