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Abstract 

Background: Whole transcriptome RNA variant analyses have shown that adenosine deaminases acting on RNA 
(ADAR) enzymes modify a large proportion of cellular RNAs, contributing to transcriptome diversity and cancer evolu‑
tion. Despite the advances in the understanding of ADAR function in breast cancer, ADAR RNA editing functional 
consequences are not fully addressed.

Results: We characterized A to G(I) mRNA editing in 81 breast cell lines, showing increased editing at 3′UTR and 
exonic regions in breast cancer cells compared to immortalized non‑malignant cell lines. In addition, tumors from the 
BRCA TCGA cohort show a 24% increase in editing over normal breast samples when looking at 571 well‑character‑
ized UTRs targeted by ADAR1. Basal‑like subtype breast cancer patients with high level of ADAR1 mRNA expression 
shows a worse clinical outcome and increased editing in their 3′UTRs. Interestingly, editing was particularly increased 
in the 3′UTRs of ATM, GINS4 and POLH transcripts in tumors, which correlated with their mRNA expression. We con‑
firmed the role of ADAR1 in this regulation using a shRNA in a breast cancer cell line (ZR‑75‑1).

Conclusions: Altogether, these results revealed a significant association between the mRNA editing in genes related 
to cancer‑relevant pathways and clinical outcomes, suggesting an important role of ADAR1 expression and function 
in breast cancer.
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Background
The RNA editing process is an essential and widespread 
mechanism for generating RNA diversity in different 
organisms. In humans, the main form of RNA editing 
is the hydrolytic deamination of adenosine, which con-
verts this nucleoside to inosine, catalyzed by the adeno-
sine deaminases acting on RNA (ADAR) enzymes [1]. In 
recent years, several studies have reported alterations of 

ADAR1 activity in cancer, where edited sites in coding 
regions have been associated with cancer progression [2, 
3]. Nevertheless, recent studies have revealed key func-
tional consequences of editing function on UTRs, where 
ADAR1 activity has been implicated mRNA stability, 
transcriptome variability and mRNA expression changes, 
by altering the canonical RNA–RNA and RNA–protein 
interactions of its targets [4, 5].

Genome-wide studies have revealed that a large pro-
portion of the transcriptome can be modified by these 
editing enzymes [4, 6–8]. Since inosine is read as gua-
nine by most genetic assays, this editing is referred as 
A-to-G(I). Regions enriched in A-to-G(I) edited sites are 
mainly located in intronic and UTRs of the transcript, 
whereas a limited number of edited sites are located in 
coding exons leading to non-synonymous changes [5, 9].
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In recent years, several studies have reported altera-
tions of ADAR1 activity in cancer. In multiple cancer 
models, ADAR1 overexpression is correlated with onco-
genic phenotypes, such as invasion and proliferation, 
and edited sites in coding regions have been associated 
with cancer progression [2, 3]. Nevertheless, recent stud-
ies have revealed key functional consequences of edit-
ing in introns or UTRs, where ADAR1 activity has been 
implicated in mRNA splicing [10, 11], RNA localiza-
tion [12], mRNA stability [5], transcriptome variability 
[4] and mRNA expression changes [5, 13], by altering 
the canonical RNA–RNA and RNA–protein interac-
tions of its targets. For instance, A-to-I edited sites in the 
3′UTR of cathepsin S mRNA, controls the mRNA stabil-
ity allowing its interaction with HuR, a key mRNA stabi-
lizing RNA binding protein [14]. Moreover, ADAR1 has 
been recently shown to interact and stabilize FAK mRNA 
through an edited site located in an intronic region, 
increasing the mobility and invasion capacities of lung 
adenocarcinoma cells [15]. This suggests that the A-to-I 
editing adds an additional level of complexity and plas-
ticity in the function and regulation of the target, with 
unprecedented implications for diseases, such as cancer.

In this report, we characterized the ADAR1 editing 
pattern in 78 breast cancer (BC) and 3 immortalized 
non-malignant breast cell lines, showing that A to G(I) 
editing affected transcripts associated to cell cycle and 
immune response. In addition, we found an increased 
number of edited sites at 3′UTR and exonic regions in BC 
cell lines compared to immortalized non-malignant cell 
lines. Moreover, we found an increase in editing counts 
at UTRs in tumor samples included in the BRCA TCGA 
cohort, suggesting that ADAR1 could modify the expres-
sion and/or stability of ATM, GINS4 and POLH tran-
scripts. Taken together, this work provides novel insights 
on the role played by ADAR1 in the regulation of those 
edited mRNAs in breast cancer context.

Results
ADAR1 expression and activity in breast cell lines
We analyzed the transcriptomes from 81 breast cell 
lines that were publicly available [16], in order to char-
acterize ADAR1 activity. We found a significant cor-
relation between ADAR1 expression and the number of 
A to G(I) sites identified (r = 0.58, p < 0.0001). A to G(I) 
sites also significantly correlates with ADAR2 (r = 0.477, 
p < 0.0001), but not with ADAR3 expression (r = 0.07, 
p < 0.499) (Fig.  1a). In addition, we found that ADAR1 
expression significantly correlates with the ADAR1 gene 
copy number in each cell line (r = 0.69, p < 0.0001) con-
sistent with previous reports (Fig. 1a) [17, 18].

Previous reports have shown that ADAR1 targets 
are enriched for transcripts involved in cell cycle and 

immune response related processes [4, 5]. To verify these 
observations in the breast cell lines, we first identified 
2872 transcripts containing 9522 high confidence A to 
G(I) edited sites present in more than 10% (8 cell lines) 
of the complete dataset (presented in Additional file  1). 
These edited transcripts are enriched for Cell cycle 
related pathways (Bonferroni corrected p < 9.9E−7), con-
firming previous reports [4, 5], among other relevant 
gene ontologies (Fig. 1b).

RNA editing is not uniformly distributed along the 
transcripts, showing a large number of edited sites at 
intronic and 3′UTR regions [4, 19, 20], Similarly, we 
found a large number of edited sites at those regions 
(Fig.  1c), where the median number of editing sites 
for immortalized non-malignant cell lines (n = 3) was 
3501 and for BC cells (n = 78) was 4053 A to G(I) sites, 
not finding significant differences in the total number 
of edited sites between the immortalized and BC cells 
(p < 0.2043, Additional file  2: Figure S1A). Interestingly, 
BC cells presents a significant increase in the number 
of edited sites located at 3′UTRs (p < 0.0461) and exonic 
regions (p < 0.0362) (Fig. 1d). In addition, we analyzed the 
editing levels of all A to G(I) sites shared between BC and 
immortalized non-malignant cells comparing, at each 
site, the fraction of reads supporting the edited variant. 
From the 1131.63 average shared sites between BC and 
non-malignant cells, 84.52 shared sites presented a sig-
nificant increase in editing level on BC cells, where 44 
sites were located at 3′UTRs, 22.30 sites were in intronic 
regions, 10.29 at 5′UTRs and 7.92 were in exons (Fig. 1e). 
Finally, to test if there was a particular region of the tran-
scripts with increased level editing levels on BC cells, we 
performed a Wilcoxon test for all those shared variants 
across BC and immortalized non-malignant cell lines. 
Remarkably, we found that 52/78, 44/78 and 9/78 BC 
cells present a significant increase in the editing levels for 
those shared sites located at 3′UTRs compared to 184A1, 
MCF12 and MCF10A, respectively (Additional file  2: 
Figure S1B), where 48/234, 28/234 and 4/234 compari-
sons shown that result on shared sites located at introns, 
5′UTRs and exonic regions, respectively (Additional 
file 3: Table S1), suggesting that in BC cells ADAR1 pre-
sent an increased activity on 3′UTRs compared to 184A1 
and MCF12 cells.

Characterization of edited sites from BC tumor 
transcriptomes in UTRs regions
Considering that we observed an increased number 
of edited sites on 3′UTRs, in the breast cells lines edit-
ing analysis, and the growing number of works that have 
described an ADAR1 role at UTRs regions [21, 22], we 
explored the possible implications of RNA editing activ-
ity at UTR regions in BC patients. To do that, we called 
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and characterized the RNA variants present in UTRs in 
1103 breast tumors and 111 adjacent normal tissues from 
the BRCA TCGA cohort. The analysis was restricted to 
571 UTRs based on the consensus list of genes edited 
by ADAR1, curating the results of three different stud-
ies that used alternative approaches to call edited sites in 
B cell lines [5, 6, 19] (Fig. 2a). Our results shows a clear 
enrichment of A to G(I) and T to C(I) transitions in BC 
samples, representing 82.17% and 6.8% of candidate 
called sites, respectively (Fig.  2b). In order to demon-
strate that edited sites detected were related to ADAR1 
overexpression, we correlated the number of edited 
sites in each tumor with ADAR1 expression levels. We 

observed a significant positive correlation between the 
numbers of A to G(I) edited sites and ADAR1 expression 
(r = 0.679, p < 0.0001), a discrete, but significant negative 
correlation, for ADAR2 expression (r = − 0.077, p < 0.01), 
and no correlation for ADAR3 (r = − 0.028, p < 0.3765) 
expression levels (Fig. 2c). Furthermore, there was a 1.24 
fold change (FC) increase (p < 0.001) in the number of A 
to G(I) edited sites in tumors compared to normal tissues 
(Fig. 2d).

Further, we compared the A to G(I) changes in the 571 
UTRs in tumor and normal tissues. Remarkably, 114 
UTR’s presented an increased editing number of edit-
ing site in the tumoral samples, compared to the normal 
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samples analyzed (with at least 1.25 > FC), most of them 
consisting of 3′ UTRs (110/114), showing an increased 
level or number of edited sites of previously reported 
ADAR1 targets, including APOL1 [23], MDM2 [21], 
MTDH and TNFAIP8L1 [24] (shown in Additional file 4). 
Interestingly, tumors show a significant increase number 
of edited sites at 3′UTRs of several important transcripts 
involved in gene expression related pathways such as 
metabolism of non-coding RNAs, generic transcription 
pathway, snRNP assembly and cell cycle, DNA damage 
response and DNA replication related pathways showing 
an increased number of edited sites on key mRNAs asso-
ciated to that signaling pathways, such as ATM, GINS4, 
and POLH mRNAs (Fig.  3a). Remarkably, tumors from 
the highest editing counts decile, presents an higher 

ATM, and POLH expression compared to those tumors 
from the lower decile editing counts, (Fig. 3b), finding a 
significant correlation between ADAR1 editing counts 
and the mRNA expression of ATM and POLH transcripts 
(Additional file 3: Table S2).

ADAR1 knockdown induces expression changes on ATM, 
GINS4 and POLH mRNAs
Based on the correlations described above, we aimed 
to study the relation between ADAR1 activity and the 
expression or stability of ATM, GINS4 and POLH. To 
address this, a ZR-75-1 BC cell line was transduced 
with a lentivirus coding for a short hairpin RNA against 
ADAR1 (ZR-75-1 SHADAR) or a scrambled sequence 
(ZR-75-1 SHC). ZR-75-1 cells were chosen because 
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wild-type (WT) ZR-75-1 cells show higher ADAR1 
expression and editing levels compared to MCF10A cells, 
measured using the RESS-qPCR assay (Additional file 5: 
Figure S2). ZR-75-1 SHADAR cells showed a significant 
down-regulation of ATM and POLH mRNA expression 
and an overexpression of GINS4 mRNA levels, com-
pared to ZR-75-1 SHC cells (Fig. 3c). Interestingly, there 
were no significant differences in the decay curves (after 
actynomicin D treatment) of ATM and POLH mRNA in 
ZR-75-1 SHADAR and SHC cells, whereas a significant 
increase in GINS4 mRNA’s stability was found in ZR-75-1 
SHADAR cells (Fig. 3d), indicating that editing of GINS4 
transcripts primarily modulates its stability, whereas 
editing of ATM and POLH primarily modulate their 
expression. ATM is a critical mediator of the DNA dam-
age response and its expression was recently shown to be 
modulated by ADAR1 in stressed cells [25]. Similarly, we 

confirmed that ZR-75-1 SHADAR cells present a signifi-
cant decrease of total ATM protein expression compared 
to ZR-75-1 SHC cells (Fig. 3e).

Finally, we investigated if ADAR expression and activity 
could have a clinical association in BC patients. We found 
that high ADAR1 expression is associated with shorter 
overall survival in patients with basal-like tumors (0.0192 
Log-rank Mantel-Cox test; Fig. 4a); while no association 
was found in patients with tumors from the other PAM50 
intrinsic BC subtypes (Additional file 3: Table S3). Inter-
estingly, censored basal-like cancer patients with higher 
ADAR1 expression pattern have a significant increase in 
the number of editing counts in their 571 selected UTRs, 
whereas patients with lower ADAR1 expression showed 
lower edited sites (3683 ± 79.74 versus 2928 ± 103.3 
edited sites, mean ± SEM, t test p < 0.0001, Fig. 4b). Con-
sidering these results is possible to suggest that basal-like 
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cancer patients with more editing on their UTRs could 
have a lower overall survival.

Discussion
In this work we analyzed the ADAR editing pattern 
across 81 breast cell lines, showing that ADAR A to G(I) 
edited sites correlates with both ADAR isoforms with 
catalytic activity, similar to other previous reports [17]. 
Noteworthy, in BC cells, there is an increased number 
of edited sites located at 3′UTR regions and exons, com-
pared with non-tumoral cell lines, suggesting that 3′UTR 
sequence modification could be an important driving 
force for mRNA variability and regulation in the BC con-
text. Our results from the BRCA TCGA UTRs analysis 
showed an overall increase in the number of edited sites 
in the tumoral samples compared to the normal samples 
of the cohort. Also, in the 1103 patients analyzed the 
editing counts of the 571 analyzed UTRs showed a strong 
correlation with ADAR1 levels. Furthermore, our results 
show that Basal-like subtype BC patients with high level 
of ADAR1 mRNA expression shows a worse clinical out-
come and increased editing in their 3′UTRS, opening the 
possibility that the editing counts, present in the analyzed 
UTRs, could have a clinical significance. Given the intrin-
sic complexity of the edition process, further research 
is necessary to understand the association between OS 
and UTR edition. Nonetheless, these results complement 
the analysis of the relation between Alu edited sites and 
overall survival described in Paz-Yaacov et  al. [26]. In 
addition, we found a significant correlation between the 

observed edited sites on 3′UTRs of ATM and POLH and 
their expression levels in the TCGA patients, suggesting 
that ADAR1 could be involved in the mRNA expression 
or stability of these genes. To further test this relation-
ship, we evaluated the expression and stability of these 
genes after ADAR1 knockdown using ZR-75-1 cells. In 
agreement with the published work from Sakurai et  al. 
[25], we found an overall diminution of both ATM mRNA 
and protein levels, after ADAR1 knockdown.

The ADAR1 mRNA editing implications for untrans-
lated and intronic regions are an emerging area of inves-
tigation. It has been suggested that ADAR1 function 
could have a tremendous impact on the mRNA target 
expression, stability and transcriptome variability [4]. In 
that line, 3′UTRs are an important regulatory structure 
of mRNA, that allow the interaction of different protein 
complexes with the mRNA, making them a platform to 
control mRNA stability, translation, and localization [27]. 
Moreover, 3′UTRs allow RNA/RNA interactions that 
function as an important regulatory mechanism for the 
regulation of mRNA expression. Recently, Qi et al. (2017) 
[24] reported that RNA editing in 3′UTRs undergo 
expression changes independently of their editing lev-
els and ADAR dsRNA binding capabilities, suggesting 
that ADAR1 could regulate the expression and/or stabil-
ity of the editing target by a growing number of different 
mechanisms.

To date, few studies have focused on 3′UTR editing and 
its possible implication for cancer. A number of studies 
have looked for actionable coding mRNA edited sites that 
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lead to phenotype changes such as viability, drug sensitiv-
ity, migration and proliferation in cellular cancer models 
[15, 17, 28–30]. However, increasingly more genome-
wide analyses suggest that a large proportion of the A-to-
I edited sites are located inside intronic and UTR regions, 
indicating that, in cancer, the deregulation of ADAR1 
involves a complex mechanism that may not be limited to 
A-to-I sites in this disease [4, 7, 20]. In this regard, recent 
reports suggest that the hyper-editing occurrence could 
be a marker for a more complex mechanism behind the 
ADAR1 function, involving protein competition for bind-
ing sites or interacting partners, displacement of protein 
complexes and trans-regulatory mechanisms, such as 
increased processing/maturation of miRNAs. However, 
further studies are needed to understand the ADAR1 
function in UTRs in cancer, where a plethora of differ-
ent mechanisms could explain the ADAR1 role in target 
regulation in a cancer context.

Conclusion
Taken together, our results show an increased number 
of edited sites and an increased level in the edited pool 
of shared sites present in 3′UTRs in BC cell lines and 
patients. This indicates that the editing function is mostly 
increased in this regulatory structure of the mRNA, 
affecting mRNAs associated with cancer.

Methods
RNA variant calling in BC cell lines dataset and data 
processing
Fastq files from 81 breast cell lines were obtained from 
Sequence Read Archive (SRA) PRJNA297219 BioProject 
[16] using SRA toolkit 2.5.7 software. Raw data is aligned 
to hg19 genome reference using STAR v2.4.2a software. 
BAM files are processed following the GATK’s best prac-
tices for RNA-seq. Variants were called using Haplotype-
Caller (GATK v3.6) in default mode and annotated with 
dbSNP v147. Called edited sites were annotated by gene 
name, positional region and strand with UCSC genome 
annotation. RNA expression levels for all cell lines were 
calculated using HTseq (v0.6.1). For CNV and ADAR1 
correlation analysis, 49 breast cell lines CNV data was 
obtained from the CCLE database (https ://porta ls.broad 
insti tute.org/ccle). Editing comparison for shared A to 
G(I) sites where made using a multi-sample VCF, com-
paring each BC cell line against each immortalized non-
malignant cell line (MCF10A, MCF12 and 184A1), to 
further perform a Fisher exact test to analyze the differ-
ences at site level and a Wilcoxon test across all shared 
sites on a particular transcript region, to test the enrich-
ment of a particular region on BC cells.

RNA variant calling in UTRs using the TCGA dataset 
and data processing
The UTRs of interest were chosen as follows: First, 
RNA edited sites described in previously reported stud-
ies [5, 6, 19] were selected to further intersect the vari-
ant list and only those UTR regions (based on Refseq 
coordinates) with variants were kept according to this 
intersected variant list. Then, the filtered UTRs list was 
intersected with the RADAR [31] database, to finally 
include only those UTRs with at least one previously 
validated editing site to keep them for further analysis. 
Reads overlapping the UTRs of interest were down-
loaded from the Cancer Genomics Hub (CGHub) using 
bam-slicer. Then, the reads were processed following 
the GATK’s best practices for RNA-seq, and variants 
were called using UnifiedGenotyper in default mode. 
Finally, RNA variants present in dbSNP v138 were 
annotated as SNPs, and the remaining ones as candi-
date edited sites. In addition, previously validated data 
from Wang, et al. [5], and RepeatMasker database were 
used in order to analyze and characterize the called 
variants. For further analysis, such as variation count, 
vcftools (v0.1.13), vcf-query and Unix command line 
tools were used. All the data generated was directly 
processed in R (3.2.0) or Unix command line.

Gene ontology and pathway enrichment analysis
Gene ontology enrichment was carried out using 
Cytoscape (v3.0.1) software and the ClueGO (v3.3.3) 
plugin. Briefly, a gene list from each analysis was sub-
mitted on this software using Reactome pathway enrich-
ment db for further comparisons. For breast cell lines 
GO enrichment analysis we used the gene list derivate 
from the edited sites present at least in 10% of 81 breast 
cells. Only statistically significant groups were displayed, 
using a Bonferroni step-down multiple comparison post 
hoc  test. Corrected p < 0.05 was considered statistically 
significant. For the cell lines analysis, the set of breast cell 
lines expressed genes were used as a background, using 
genes with more than  Log2(1) FPKM values present in 
more than 10% (8) of the samples.

Survival analysis
Overall survival data from BRCA TCGA patients belong-
ing to specific PAM50 molecular subgroups was obtained 
from cBioPortal [32] using the clinical data from TCGA. 
Tumors were stratified according to their ADAR mRNA 
expression levels into |z| > 1 and |z| < 1 groups. Kaplan 
Maier survival curves were plotted and analyzed in 
GraphPad Prism 7.0. A log-rank test, p < 0.05 was consid-
ered significant.

https://portals.broadinstitute.org/ccle
https://portals.broadinstitute.org/ccle
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Cell culture
MCF10A, MCF7 and ZR-75-1 breast cell lines were 
obtained from ATCC and cultured under standard con-
ditions, at 37  °C in a humidified incubator containing 
5%  CO2. Cells were routinely tested for mycoplasma 
contamination using the PCR Mycoplasma Test Kit EZ-
PCR (Biological Industries) following the manufacturer’s 
instructions.

Lentiviral transduction
ZR-75-1 cells were transduced with a commercial pre-
package lentiviral vector (GeneTarget, LTSH-U6-RP) 
coding a shRNA against ADAR1 mRNA or a scrambled 
ShRNA (GeneTarget U6(shRNA-Ctr)-RP) as a con-
trol. The ADAR1 shRNA sequence corresponds to the 
TRCN0000050789 sequence obtained from The RNAi 
consortium. Cells were maintained in growth media with 
1 µg/mL Puromycin (Invitrogen) for selection to further 
sort them.

Immunoblotting
Protein lysates and western blot were processed as 
described in Sagredo et  al. (2017) [33]. Briefly, protein 
lysates were generated using RIPA buffer (25 mM Tris–
HCl pH 7.6, 150  mM NaCl, 5  mM EDTA, 1% v/v Tri-
tonX-100, 1% w/v sodium deoxycholate, 0.1% w/v SDS) 
and protease (Calbiochem) and phosphatase (Roche Life 
Science) inhibitor cocktails. Protein lysates (30  µg per 
lane) were resolved in 8% sodium dodecyl sulfate–poly-
acrylamide gel electrophoresis (SDS-PAGE) and proteins 
were transferred onto a nitrocellulose membrane. Mem-
branes were blocked in 5% w/v BSA (Winkler), and then 
incubated with primary antibodies at 4  °C overnight. 
Anti-ADAR1 (Cell signaling, 14,175) Rabbit anti-ATM 
(Cell Signaling, 2873) and mouse anti-α-tubulin (Sigma-
Aldrich, T5168) antibodies were used. All primary anti-
bodies were detected using appropriate HRP-conjugated 
secondary antibodies and a chemiluminescence reagent 
(SuperSignal West Pico Chemiluminescent Substrate, 
Thermo Scientific). Finally, images were obtained using 
the ChemiScope3500 Mini chemiluminescence imaging 
system (Clinx Science Instruments).

RNA extraction, quantitative PCR and RNA stability assay
RNA extraction, cDNA synthesis and quantitative 
PCR were processed as described in Sagredo et al. [33]. 
ACTB was used as a housekeeping gene. In addition, 
RESS-qPCR assays for AZIN1 and MDM2 targets were 
performed according to Crews et  al. [34]. The complete 
primer list is presented in Additional file  6. mRNA sta-
bility of ATM, GINS4 and POLH, in ZR-75-1 SHC 
and SHADAR cells were assessed using Dactinomycin 

(SIGMA-Aldrich) (3 µg/mL) at 0, 6, 8 and 16 h, and total 
RNA was extracted to analyze the different gene of inter-
est using qRT-PCR. To compare the mRNA decay curves, 
each condition was normalized against the respective 
group of 0 h treated cells.

PCR and Sanger sequencing
For ATM, AZIN1 and MDM2 3′UTR sequences, PCR 
reactions were performed using the High fidelity Phu-
sion polymerase (Thermo Fisher Scientific) following the 
manufacturer’s instructions. PCR products were run in 
an electrophoretic gel and purified with the Wizard PCR 
clean-up kit (Promega). Chromatogram results were ana-
lyzed using CLC Main Workbench v5.5 (CLC Bio). ATM 
3′UTR primers were previously described by Wang et al. 
[5].

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
7.0. qRT-PCR and Western Blot were examined by Two 
tailed Student’s t-test. For each comparison p < 0.05 was 
considered statistically significant, with at least 3 inde-
pendent experiments performed for each analysis.
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Additional file 2. A to G (I) counts comparison between normal Cells 
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cells (3) and BC cells (78). Figure S1B. Editing level comparison between 
normal and BC cells for those shared variants located at 3′UTRs.

Additional file 3. Supplementary tables associated to SRA and TCGA 
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Additional file 4. UTRs with an increased editing number on BC samples.

Additional file 5. ZR‑75‑1 cell line characterization.

Additional file 6. List of primer sequences used for qRT‑PCR and 
RESS‑qPCR.
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