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Abstract 

In the era of climate change, due to increased incidences of a wide range of various environmental stresses, espe‑
cially biotic and abiotic stresses around the globe, the performance of plants can be affected by these stresses. After 
oxygen, silicon (Si) is the second most abundant element in the earth’s crust. It is not considered as an important 
element, but can be thought of as a multi‑beneficial quasi‑essential element for plants. This review on silicon presents 
an overview of the versatile role of this element in a variety of plants. Plants absorb silicon through roots from the 
rhizospheric soil in the form of silicic or monosilicic acid. Silicon plays a key metabolic function in living organisms 
due to its relative abundance in the atmosphere. Plants with higher content of silicon in shoot or root are very few 
prone to attack by pests, and exhibit increased stress resistance. However, the more remarkable impact of silicon is the 
decrease in the number of seed intensities/soil‑borne and foliar diseases of major plant varieties that are infected by 
biotrophic, hemi‑biotrophic and necrotrophic pathogens. The amelioration in disease symptoms are due to the effect 
of silicon on a some factors involved in providing host resistance namely, duration of incubation, size, shape and num‑
ber of lesions. The formation of a mechanical barrier beneath the cuticle and in the cell walls by the polymerization of 
silicon was first proposed as to how this element decreases plant disease severity. The current understanding of how 
this element enhances resistance in plants subjected to biotic stress, the exact functions and mechanisms by which it 
modulates plant biology by potentiating the host defence mechanism needs to be studied using genomics, metabo‑
lomics and proteomics. The role of silicon in helping the plants in adaption to biotic stress has been discussed which 
will help to plan in a systematic way the development of more sustainable agriculture for food security and safety in 
the future.
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Background
The earth’s surface is covered with 28.8% (dry wt. basis) of 
silicon (Si) after oxygen, but the existence of Si in its pure 
form is extremely rare [1–3]. Silicon is found as quartz, 
feldspar, mica and clay minerals in the earth’s crust [2, 
4, 5]. In biological systems, Si occurs in various forms of 
amorphous silica  (SiO2nH2O) namely, as phytoliths and 
in silica rich plants [6, 7]. The biogenic share of silicon is 
about 1–3% of the total Si pool in the soil [8].
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The numerous advantages of Si to crops are now widely 
acknowledged [3, 9–12]. The plant-available forms of Si 
may be limited [1, 13]. The plant biologists/physiologists 
recognized the significance of Si as early as the nine-
teenth century [14–16]. Silicon is now widely considered 
as a beneficial element [2, 17], but it is still considered 
non-essential for plant growth and development [18]. 
Lewin and Reimann [19] demonstrated that the Si played 
a major metabolic role in living organisms due to its rela-
tively abundance in nature. According to Epstein [20], 
silicon is essential for plant growth, acts as a mechanical 
barrier and provides resistance against plant pathogens 
and herbivores, and as such drawn the more attention 
of its role in plant biology. Furthermore, [9] found that 
the majority of crops contain significant quantity of Si, 
implying that this is unlikely to be a result of stochastic 
element absorption, similar to how evolutionary mecha-
nisms have evolved for uptake and accumulation of other 
nutritional elements.

Furthermore, Si uptake by plant roots can be adaptive 
in response to changing atmospheric variables namely, 
stress, whether abiotic or biotic [2, 3, 21, 22], and thus is 
not always necessary, but arguably important. While the 
importance of this feature to plants is still argued, consid-
erable progress has been made in our understanding of Si 
uptake and accumulation in plants. Plants can be classi-
fied as hyper-accumulators, accumulators, passive accu-
mulators and non-accumulating varieties. Furthermore, 
the benefits of application of liquid forms of Si have been 
demonstrated, especially during plant stress tolerance. 
Limited studies have been carried out whether Si plays a 
significant role in plant metabolic activities [2, 10, 22, 23].

The experiments showing the impact of Si on plant tol-
erance to environmental stresses [3, 24–28] have been 
carried out at physiological, molecular and ecological 
levels [12, 29–31]. The current research articles published 
on the mitigation of plant stress by Si demonstrates the 
interest in this area [3, 11, 22, 32, 33]. However, none of 
the researchers took into account the possibility of Si 
interacting with fundamental plant omics. Indeed, most 
studies have concentrated on species-specific and narrow 
aspects of Si–plant stress interactions. Some studies have 
contributed to our understanding of the larger effects of 
Si on plant growth and defence, including interactions 
with plant diseases, but the mechanisms underlying these 
effects are still unknown. The present review, briefly dis-
cusses the physiological and molecular basis of ameliora-
tion of biotic stress conditions in plants by silicon and the 
mechanisms involved.

Biotic stress
In natural conditions, plants suffer from various types 
of stresses caused by living organisms like bacteria, 

viruses, fungi, parasites, significant and non-significant 
insects. Like livestock, plants also have a defence sys-
tem, which provides tolerance against environmental 
stresses. On invasion by pathogens and herbivorous 
pests, plants make use of pre-existing physical, chemical 
and mechanical barriers to protect themselves. The plant 
defence functions are also activated upon attack by pest; 
plant protection functions as a unit to decrease negative 
responses of biotic stress (Table  1). The stress induced 
defence system is associated with complex intercon-
nected pathways of signal transduction in which phyto-
hormones namely, abscisic acid (ABA), ethylene (ETH), 
jasmonic acid (JA) and salicylic acid (SA) plays an impor-
tant role [2, 13, 34–36]. The biotic stress may enhance in 
the coming years because of climate change. The costs 
linked with stress are potentially enormous, and the 
effects of the stress may have a great impact on sustain-
able agriculture and environmental systems [3].

Silicon mitigates biotic stress in plants: physical 
and mechanical barriers
Plants grown under normal conditions are exposed to 
environmental stresses such as biotic (caused by viral 
and bacterial pathogens or fungi and herbivores) and 
abiotic stresses (saline, high and low temperature, flood-
ing, UV, wind, drought, metal toxicity, light and mineral 
deficiency or excess). Supplementing plants with Si have 
been shown to enhance plant tolerance to mammalian, 
arthropod, and molluscan herbivores, fungal and bacte-
rial pathogens, viruses and nematodes [2, 21, 22, 26, 37, 
38]. The physical defence induced by Si deposition in 
plant parts in the form of phytoliths (largely composed 
of  SiO2) was one of the first theories proposed for study-
ing stress tolerance to pests [39, 40]. Silicon translocated 
from the soil solution as monosilicic acid into plants. 
Monosilicic acid polymerizes to form phytoliths, which 
are accumulated within the plant in an irreversible man-
ner [20, 29]. Deposition of phytoliths enhances plant 
immunity and physical resilience, and serves as a physical 
barrier to fungal penetration [41, 42]. Silicon deposition 
may also wear away the feeding mouthparts, or mandi-
bles of insects [43], decrease plant digestibility for both 
insect and mammalian herbivores [21, 44, 45], and have 
an adverse effect on herbivores [46]. Importantly, plant 
tissue silicification may be induced more in those plants 
which are highly attacked by various organisms [42, 47]. 
Silicon also affects the plant metabolites associated with 
plant defence [10, 48, 49], such as chitinase (CHT), β-1,3-
glucanase, phenylalanine ammonia-lyase (PAL), polyphe-
nol oxidase (PPO), in a number of plant–pathogens such 
as necrotrophic, biotrophic and hemibiotrophic patho-
gens [37, 50, 51]. Silicon-induced increased production 
of flavonoids, peroxidases (PODs) and chitinase (CHT) 
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Table 1 The adaptive mechanisms of silicon in crop plants against biotic stress

Stress/disease Plant Action Source

Anthracnose Tomato (Solanum lycopersicum) Cuticle thickness and fruit firmness 
enhanced

[107]

Bacterial speck, Bacterial wilt, Fusarium 
crown and root rot

 ,, Upgraded physiological, biochemical and 
molecular traits

[98, 106, 108, 109]

Early blight  ,, Improve biochemical and molecular 
aspects

[72]

Rice leaf folder Rice (Oryza sativa) Food/grain quality and conversion efficien‑
cies decreased

[110]

Brown plant hopper  ,, Extraction of honeydew reduced [111]

Fall armyworm  ,, Damage feeding preference as well as S. 
frugiperda larval survival

[112]

Sugarcane borer  ,, Feeding injury decreased and upregulated 
exposure to unfavorable climatic vari‑
ables and natural enemies arising from 
decreased boring success

[113]

Blast, Brown spot, Grain discoloration, Leaf 
scald and Sheath blight

 ,, Enhanced physical, biochemical and 
molecular activities

[41, 51, 67, 83, 114–120]

Diatraeasaccharalis Sugarcane (Saccharum spp.) Upgrade/maintain leaf cuticle thickening 
and leaf stomata crystals

[121]

Stalk borer  ,, Decreased % stalks and length bored [122]

Brown rust  ,, Physical and biochemical [123]

Euschistusheros Soybean (Glycine max) Upregulated non‑preference and antibiosis 
resistances

[124]

Powdery mildew Arabidopsis (Arabidopsis thaliana) Physio‑biochemical activities increased 
and/or balanced

[58, 75, 125]

Black sigatoka
Fusarium wilt
Root rot
Xanthomonas wilt

Banana (Musa spp.)  ,, [126–129]

Powdery mildew Barley (Hordeum vulgare) Improve physiological performance [130]

Angular leaf spot Bean (Phaseolus vulgaris)  ,, [131]

Powdery mildew Black gram (Vigna mungo) Enhanced expression of genes [132]

Dollar spot Bentgrass (Agrostis stolonifera) Improve physiological and biochemical 
characteristics

[90, 133]

Powdery mildew Bitter gourd (Momordica charantia) Enhanced biochemical activities [134]

Anthracnose Capsicum (Capsicum annuum) Improve physiological and biochemical 
characteristics

[135]

Fruit decay Cherry (Prunus avium) Improve biochemical parameters [136]

Fusarium root rot and Postharvest pink rot Chinese cantaloupe Improve physiological and biochemical 
characteristics

[137, 138]

Leaf rust and Root‑knot Nematode Coffee (Coffea arabica)  ,, [139, 140]

Anthracnose Common bean (Phaseolus vulgaris) Improve biochemical traits [141, 142]

Fusarium wilt Cotton (Gossypium spp.) Improve physiological and biochemical 
characteristics

[143]

Crown and root rot, Fusarium wilt and 
Powdery mildew

Cucumber (Cucumis sativus)  ,, [37, 144–148]

Decay Hami melons (Cucumis melo) Improve biochemical activities [149]

Downy mildew Lettuce (Lactuca sativa) Enhance physiological and biochemical 
activities

[150]

Bacterial fruit blotch and Powdery mildew Melon (Cucumis melo) Improve biochemical capacity [151, 152]

Pink rot disease and Powdery mildew Muskmelon (Cucumis melo) Enhance physiological and biochemical 
activities

[146, 153]

Basal stem rot Oil palm (Elaeis guineensis) Balance physical characteristics [154]

Brown spot Pea (Pisum sativum) Balance biochemical activities [155]
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in some necrotrophic pathogens have been reported [37, 
52].

Current research has looked into the interactions 
between Si and plant defence signaling transduction 
pathways, specifically the main plant hormone signaling 
pathways. Plants develop a complex and unique blend of 
SA (generally linked with pathogens of (hemi)biotrophic), 
JA (generally linked with pathogens of necrotrophic and 
insect herbivores), and ETH (which is usually regarded 
as ‘fine-tuning’ the JA defence action) in response to 
attack or infection [53, 54]. Plant hormone signaling has 
been shown to be important for Si-mediated plant tol-
erance to disease stress [50]. Ye et al. [55] demonstrated 
that the JA pathway needed for Si- induced insect her-
bivore tolerance uses JA-deficient rice mutants. Several 
other researchers demonstrated that the capacity of Si to 
induce JA-dependent defence functions, such as indirect 
insect herbivore attraction by changing the composition 
of herbivore-induced plant volatiles (HIPVs) generated 
during herbivore attack [56, 57]. Silicon increased SA-
dependent defence genes in response to infection from 
biotrophic fungal pathogen, but induction of the SA 
pathway was not needed by Si to increase stress toler-
ance [58]. Van Bockhaven et al. [59] noted that the role 
of Si in increasing tolerance against necrotrophic fungal 
pathogen (Cochliobolus miyabeanus) was not dependent 
on the JA and SA pathways. Rather, they proposed that Si 
deactivated pathogen ethylene production by preventing 
the pathogen from hijacking the plant’s ETH mechanism. 
These findings indicated that the Si plays a significant 
role in multiple phytohormone signaling pathways to 
mitigate plant biotic stress [21, 28, 60].

Silicon can also help to overcome certain (hemi)bio-
trophic pathogens and the ability of some insects to sup-
press plant-induced defenses. When a plant detects a 
biotic threat, it triggers the defence phytohormone sign-
aling pathway. Pathogen-associated (PAMPs), damage-
associated (DAMPs) and herbivore-associated molecular 
patterns (HAMPs) are examples of conserved molecu-
lar patterns that differ depending on the plant disease 
[61, 62]. The identification of these molecules by pattern 
recognition receptors (PRRs), often in conjunction with 

identification of other pathogens/insects effector pro-
teins, may activate a plant defense response (known as 
PAMP-triggered immunity [PTI] or effector-triggered 
immunity [ETI]) that is sufficient to induce plant stress 
[62, 63]. Though necrotrophic pathogens do not develop 
effector proteins [53], (hemi)biotrophic pathogens and 
herbivores do, effectively suppressing the plant immune 
response by suppressing PTI and ETI [64, 65]. Silicon 
accumulation in the plant apoplast is likely to prevent 
pathogen effectors from reaching their target sites, pre-
venting the pathogen from inhibiting the plant defence 
response [58]. Silicon may be able to help in overcom-
ing plant defence suppression, by enabling a complete 
defence response to be initiated when a biotic threat 
is present. One of the first cellular responses following 
identification of PAMPs or HAMPs is formation of reac-
tive oxygen species (ROS), which helps in assessing biotic 
stress.

A common mechanism by which Si is proposed to 
function and mitigate biotic stress is ROS and enhanced 
antioxidant metabolism (a similar mechanism is involved 
in abiotic stress) [66]. Generation of ROS and increasing 
oxidative metabolism help to reduce oxidative damage to 
the plants [67, 68]. ROS generation and increased antiox-
idant metabolism have been linked to stress due to path-
ogen (bacterial and fungal) infection, as well as damage to 
the plant from chewing and sucking insects [67–69]. ROS 
may have a negative and direct effect on biotic stress [70]. 
However, ROS play a number of signaling actions in dif-
ferent defence signaling pathways with plant hormones, 
such as JA and SA [53, 70–72]. Additionally, ROS may 
stimulate plant defence genes, resulting in the accumula-
tion of defence metabolic compounds such as phytoalex-
ins and allelochemicals in the plants [73]. Van Bockhaven 
et al. [59] demonstrated that the primary plant metabo-
lism, i.e. photorespiration and the development of ROS, 
play a significant role in the broad-spectrum impact of Si 
on disease mitigation. Silicon is needed for sustenance of 
life processes in diatoms (algal phytoplankton), including 
replication of DNA [74], and evaluating how Si affects the 
cellular metabolism in algae and other primitive plants 
could provide valuable insights into how Si functions and 

Table 1 (continued)

Stress/disease Plant Action Source

Downy mildew Pearl millet (Pennisetum glaucum) Enhance physiological and biochemical 
activities

[156]

Fusarium patch and Gray leaf spot Perennial ryegrass (Lolium perenne)  ,, [49, 157]

Dry rot Potato (Solanum tuberosum)  ,, [137]

Powdery mildew Pumpkin (Cucurbita spp.)  ,, [158]

Blast, leaf blast, leaf streak, powdery mildew 
and spot blotch

Wheat (Triticum spp.)  ,, [76, 159–162]
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its mechanisms of action in angiosperms. The production 
of ROS as a by-product of fundamental life processes, as 
well as the implications of an association of Si with oxi-
dation/antioxidant metabolism in numerous plant stress 
studies, indicate that this is a promising research avenue 
for determining fundamental role of Si in lower and 
higher plants.

In order to better understand how Si affects plant gene 
expression, researchers must combine transcriptomic 
approaches, i.e. microarrays with more focused assays, 
like real-time quantitative PCR (qRT-PCR). Fauteux 
et  al. [75] observed that the defence genes of infected 
plants are upregulated and primary metabolism genes are 
downregulated. After the application of Si, the defence 
genes were less affected, and that there was no evidence 
to indicate that Si had an effect without pathogenic stress 
condition. Similarly, Chain et  al. [76] and Van Bock-
haven et al. [59] noticed that applying Si to plants almost 
completely eliminated the pathogen stress effects at the 
transcriptomics level (Tables 2, 3). In numerous studies, 
a higher Si content in the rhizospheric soil and growth 
medium has been shown to improve crop resistance to 
pest infection. With Si supplementation, white backed 
plant hoppers (Sogatella frucifera) have shown decreased 
feeding, decreased growth durability, decreased fecun-
dity, and reduced population growth [77]. Furthermore, 
the foliar application of Si as calcium silicate  (Ca2SiO4) 
to wheat (Triticum spp.), cotton (Gossypium spp.), sug-
arcane (Saccharum spp.), and cucumber (Cucumis spp.) 
enhanced white fly nymph mortality, resulting in sub-
stantial loss of crop production against normal plants 
[78]. The Oryza sativa plant roots with high Si content 
are resistant to rootknot nematode infection [79]. Silicon 
supplementation can also help rice plants resist attacks 
from green leaf hoppers, plant hoppers, and stem mag-
gots [80]. Furthermore, leaf-eating caterpillars have been 
found to have a low preference for silicified plant parts 

[80]. Different approaches could be used to move Si-
transporters from higher accumulator plants to plants 
lacking Si-transporters, thus providing protection against 
diseases.

In Arabidopsis, it has recently been demonstrated that 
Si may protect plants from diseases through the SA-
independent pathway. As a result, it was suggested that 
further work needs to be done on the SA-independent 
plant protection mechanisms, so that hybrid crops may 
be developed to cope with the changing environmen-
tal conditions [81]. Few studies have been conducted 
on the effect of Si on increased plant tolerance to insect 
herbivores. As a result, further research into the interac-
tions of Si with the transcriptome of various varieties of 
plants whose Si uptake and accumulation ability varies 
(e.g. accumulators, non-accumulators) during attack by 
various types of insect herbivores (e.g. chewers, suckers) 
can provide useful insights into how Si alters plant gene 
expression in relation to insect stress.

Impact of silicon on plants during favorable environmental 
conditions
It was earlier thought that Si had little or no impact on 
plant metabolism under controlled conditions [82]. In 
contrast, at present the effects of silicon on alleviation 
of biotic stresses are now well understood. Silicon has a 
profound effect on more basic metabolic processes [21, 
22]. Recently, pot-based studies on the effect of Si on Sac-
charum spp. hybrid growth and its protection against 
an insect herbivore, showed substantial enhancement 
in plant growth and productivity [45]. Chain et  al. [76] 
observed that the application of silicon to control plants 
of Triticum aestivum changed the regulation of 47 genes, 
while Brunings et al. [83] demonstrated that application 
of silicon to normal rice plants, changed the regulation 
of 221 genes, 28 of which were linked with defence and 
stress, and the rest were linked with primary metabolic 

Table 2 The role of defense‑related enzymes regulated by silicon in biotic stress

Stress/disease Plant Antioxidants Source

Anthracnose Bean (Phaseolus vulgaris) SOD, APX and GR [141]

Powdery mildew, crown and root rot Cucumber (Cucumis sativus) POD, PPOs, CHT and POD [37, 50]

Powdery mildew and pink rot Melon (Cucumis melo) POD, CHT, SOD, and β‑1,3‑glucanase [149, 152]

Leaf spot Pea (Pisum sativum) CHT and β‑1,3‑glucanase [155]

Blast, brown spot, sheath blight Rice (Oryza sativa) Glucanase, POD, PPOs, phenylalanine ammonia‑lyase, SOD, CAT, 
APX, GR, lipoxygenase, Phenylalanine ammonia‑lyases, CHT 
and β‑1,3 glucanase

[51, 67, 116, 
120, 163, 
164]

Target spot Soybean (Glycine max) CHT, β‑1‑3‑glucanases, phenylalanine ammonia‑lyases, POD and 
PPOs

[165]

Blast Wheat (Triticum spp.) CHT and POD [162]

Bacterial wilt and blight Tomato (Solanum lycopersicum) CAT, APX, SOD, GR POD and phenylalanine ammonia lyase [72, 166]
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mechanisms or whose functions were unknown. Van 
Bockhaven et  al. [59] reported that Si changed the 
expression of genes involved in cell wall biosynthesis and 
glycolysis, as well as those of nitrogen and amino acid 
metabolism, and also affected the metabolism of defence 
hormones, namely ETH, JA and SA in rice plants.

Detmann et  al. [84] showed the beneficial effects of 
silicon in rice plants. They concluded that the element 
enhanced photosynthetic capacity and, as a result, altered 
metabolism by stimulating amino acid remobilization, 
based on photosynthesis responses and transcriptomic 
and metabolomic profiling in paddy. According to Fleck 
et  al. [85], Si significantly changed the root anatomy of 
normal grown crop plants, as well as the regulation of 
265 genes, including a 25-fold increase of a particular 
protein-encoding gene that can play a key role in the 
perception of an unknown Si signal. Furthermore, Si has 
been shown to delay leaf senescence in both Si-accumu-
lating and non-accumulating plant cultivars by activating 
the cytokinin pathway [86].

Silicon mediated defense‑related enzymes
Stress-related enzymes are strongly associated with dis-
ease tolerance, and Si has been observed to stimulate 

the activity of enzymes subjected to biotic stress [28, 
72]. Many studies have assessed the impact of Si in dis-
ease tolerance by activating the activities of defence-
related enzymes namely, chitinase (CHT), peroxidases 
(PODs), polyphenol oxidases (PPOs), β-1,3-glucanase, 
phenylalanine ammonia-lyase (PAL), superoxide dis-
mutase (SOD), ascorbate peroxidase (APX), glu-
tathione reductase (GR), catalase (CAT), lipoxygenase 
and glucanase [28, 72, 87] (Table  2). Application of Si 
could enhance the activity of POD and CHT, which 
play a significant role in biotic stress. POD is involved 
in cell-wall reinforcement, in the final stages of lignin 
biosynthesis, and in the cross-linking of cell wall pro-
teins [88]. Defence-related enzymatic responses 
induced by Si can be associated with expression of 
genes related to enzyme synthesis [49]. The upregulated 
activities of antioxidative enzymes were monitored in 
cucumber, turfgrass and pea plants which were infected 
with powdery mildew, sheath blight and rust diseases, 
respectively [89–93]. Previous findings indicated that 
Si enhances SOD, CAT, APX, GR and POD content 
thereby, protecting the antioxidative metabolic pro-
cesses [72, 94–96].

Table 3 The role of genes upon the application of Si subjected to biotic stress/disease

Arrow indicates increase and decrease activities

Stress/disease Plant Functional annotation Biological process Function 
of Genes

Source

Rice blast Rice (Oryza sativa) β‑1,3‑Glucanase precursor, transport of heavy metal/
detoxification protein domain‑containing protein, 
pathogenic related transcriptional factor and ERF 
domain containing protein, precursor of peroxidase, 
resistance protein of bacterial blight and precursor of 
peroxidase

Defense ↑ [83]

Stem rust tolerance protein of barley, family protein of 
disease resistance, HSP‑20 domain containing protein, 
peroxidase, terpene synthase like protein and patho‑
genesis related protein type‑I

↓

WRKY domain containing protein of DNA binding, 
transcriptional protein of trans‑acting and R2R3 Myb 
protein (type‑P)

Regulatory ↓

Bacterial wilt Tomatao (Solanum lycopersicum) Stress responsive factor, pathogenesis related protein‑1, 
β‑glucanase, chitinase class II, peroxidase, phenyla‑
lanine ammonia lyase, Arabinogalactan protein and 
polygalacturonase inhibitor protein

Defense ↑ [98]

Rice blast Rice (Oryza sativa) Phosphoenolpyruvate carboxylase kinase, RNA‑directed 
DNA polymerase (RT) domain containing protein, 
high pl α‑glucosidase, oxalate oxidase like protein and 
P‑type ATPase

Housekeeping ↑ [83]

Family protein of putative cyclase, protein of transferase 
family, Dicyp‑2 cyclophilin, DNA‑directed RNA poly‑
merase‑2 and tyrosine decarboxylase I

↓

Cytochrome P450 monooxygenase Photosynthetic ↓
Bacterial wilt Tomatao (Solanum lycopersicum) Group of WRKY transcription factor‑II, jasmonate and 

ethylene responsive factor‑III and ferredoxin‑I
Regulatory ↑ [98]
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Silicon modulated expression of genes
Housekeeping genes are essential for the proper func-
tioning of cells and are expressed constitutively in all 
cells, regardless of the patho-physiological responses of 
these genes. Despite the fact that the expression of house-
keeping genes is stable, some studies have found that 
they lose their stability when they are subjected to stress 
[22, 28, 83, 97]. According to Brunings et al. [83], Si appli-
cation decreased the expression of essential housekeep-
ing genes in rice under control conditions, but increased 
the expression of housekeeping genes to preserve cel-
lular functions throughout pathogen infection. Silicon-
mediated up-regulation of housekeeping genes such as 
actin (ACT), alpha-tubulin (TUB), and phosphoglycer-
ate kinase (PGK) in Ralstonia solanacearum-infected in 
tomatoes [98]. According to Jarosch et al. [99], the actin 
cytoskeleton provided the basal resistance during infec-
tion in R. solanacearum. As a result, the host resistance 
was induced by the Si-dependent upregulation of actin in 
tomato (Solanum lycopersicum) plants [98]. Due to lack 
of a high-density Si transporter, tomato is classified as a 
low-level Si accumulator (about 0.2% dry weight) [100]. 
Furthermore, the application of Si in low-accumulating 
plants, i.e. Solanum lycopersicum [101], Capsicum ann-
uum [102], and Rosa spp. [103] has resulted in overcom-
ing stress resistance. Despite the fact that housekeeping 
genes have a constant expression level, variation in 
expression levels in response to Si treatment and patho-
gen infection can trigger the host plant’s basal defence 
mechanism to protect it from the pathogen (Table 3).

Silicon is associated with the metabolic mechanisms 
of plant–pathogen interactions, triggering host plant 
defence genes via a sequence of physiological and bio-
chemical reactions and signal transductions, as well as 
inducing disease resistance in plants [24, 58]. Silicon 
could play a role in the primary response, modulating 
the behavior of post-elicitation intracellular signaling 
pathways that control the expression of defence genes 
involved in cell wall structural modifications, hypersen-
sitivity responses, synthesis of hormones, antimicrobial 
compound synthesis, and in formation of PR proteins 
[24]. To demonstrate the mechanism of protection of Si 
in various pathological systems, transcriptomic and pro-
teomic experiments have been carried out [2, 21–23, 28, 
98, 104].

The expression of genes encoding a novel proline-rich 
protein (PRP1) was increased under the induction of sys-
tem acquired resistance in Cucumis sativus mediated by 
Si, which led to cell-wall reinforcement at the site of pen-
etration of fungi into epidermal cells [105]. The expres-
sions of CHI-II, GLU, PGIP, and POD, which are due to 
virulence factors released by the pathogen to inhibit host 
resistance and promote host invasion, were reduced by 

treatment with Si during pathogen interactions in tomato 
plants (R. solanacearum) [98]. Twenty six proteins were 
significantly altered by Si treatment in tomato plants, 
implying that Si-mediated disease resistance is linked to 
protein changes [106]. For example, Arabidopsis infected 
with the fungus, Erysiphe cichoracearum showed changes 
in the expression of about 4000 genes. The number and/
or expression level of defence related genes enhanced 
in Si treated plants [75]. The expression of around 900 
genes reacting to pathogen infection were modified in 
wheat plant leaves infected with Blumeria graminis f. sp. 
tritici, while the pathogen modified a few genes in sili-
con treated plants, implying that Si almost removed the 
stress due to pathogen invasion [76]. Brunings et al. [83] 
inoculated in the rice transcriptome, Magnaporthe ory-
zae, and riceblast fungus. Treatment of the plant with sil-
icon appears to eradicate the effect of pathogen invasion 
on the transcriptome of host plants, rather than induc-
ing resistance through transcriptional reprogramming of 
defence-related genes.

Silicon as a sustainable alternative
Silicon has been shown to enhance crop resistance to a 
variety of biotic stresses and can be seen as an alternative 
to adaptive strategies [3, 10, 21, 22, 32]. Due to the special 
physical and chemical properties of Si have useful appli-
cation in various sectors, including promising applica-
tions in the agri-sectors, they can easily enter into plant 
cells and affect the plant development by affecting their 
metabolism through diverse interactions, thereby trigger-
ing the potential to combat stress conditions. Thus, Si has 
the potential to be used as a fertilizer alone for specific 
crops and can be used to deliver herbicides and fertiliz-
ers in plants. The application of Si in agriculture may also 
lead to worldwide food security and safety by helping 
in the development of advanced varieties of crops with 
maximum yield. Silicon can provide green and eco-envi-
ronment friendly alternatives to different synthetic ferti-
lizers without environmental pollution. Simultaneously, 
the well-known positive impact on crop productivity and 
quality has a tremendous potential to enhance farmers’ 
profit margin through the utilization of the alternative 
approach.

Conclusion and future prospects
Nowadays, there has been a lot of research which 
focuses on the role of Si in ameliorating plant tolerance 
to biotic stress, as well as in the regulation of signaling 
transduction pathways, and also in activating transcrip-
tion factors in response to stress. Based on the present 
review, we concluded that Si increases plant resistance 
capacity to biotic stress, through a complex pathway 
associated with the plant defence system by activating 
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transcription factors. In this review, we have discussed 
various aspects of Si and its regulatory functions dur-
ing unfavorable conditions, and used key points from 
various relevant studies to explain how Si enhances 
stress resistance. While Si is associated with thou-
sands of plant genes, it is not clear which other tran-
scription factors and signaling proteins interact with 
Si to increase stress resistance. It will be very interest-
ing to explore the role of Si signaling pathway, interac-
tions with phytohormones, and crosstalk at the level of 
plant tissues, and at the cellular level to better under-
stand how plants respond to environmental stresses, 
especially biotic stress. Overall, future research should 
concentrate on collecting more evidence to unravel the 
molecular mechanisms and the role of Si in plant toler-
ance to biotic stress, as well as the regulation of signal 
transduction pathways, and gene expressions associ-
ated in the biosynthesis of key compounds relevant to 
plant development.
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