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Hepato-protective effect of rutin via IL-6/STAT3
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Abstract

Background: Carbon tetrachloride (CCl4) induces hepatotoxicity in animal models, including the increased blood
flow and cytokine accumulation that are characteristic of tissue inflammation. The present study investigates the
hepato-protective effect of rutin on CCl4-induced hepatotoxicity in rats.

Results: Forty male Wistar rats were divided into four groups. Group I (control group) received 1 mL/kg of dimethyl
sulfoxide intragastrically and 3 mL/kg olive oil intraperitoneally twice a week for 4 weeks. Group II received 70 mg/
kg rutin intragastrically. Groups III and IV received CCl4 (3 mL/kg, 30 % in olive oil) intraperitoneally twice a week for
4 weeks. Group IV received 70 mg/kg rutin intragastrically after 48 h of CCl4 treatment. Liver enzyme levels were
determined in all studied groups. Expression of the following genes were monitored with real-time PCR: interleukin-6
(IL-6), dual-specificity protein kinase 5 (MEK5), Fas-associated death domain protein (FADD), epidermal growth factor
(EGF), signal transducer and activator of transcription 3 (STAT3), Janus kinase (JAK), B-cell lymphoma 2 (Bcl2) and B-cell
lymphoma-extra-large (Bcl-XL). The CCl4 groups showed significant increases in biochemical markers of hepatotoxicity
and up-regulation of expression levels of IL-6, Bcl-XL, MEK5, FADD, EGF, STAT3 and JAK compared with the control group.
However, CCl4 administration resulted in significant down-regulation of Bcl2 expression compared with the control
group. Interestingly, rutin supplementation completely reversed the biochemical markers of hepatotoxicity and the
gene expression alterations induced by CCl4.

Conclusion: CCl4 administration causes alteration in expression of IL-6/STAT3 pathway genes, resulting in hepatotoxicity.
Rutin protects against CCl4-induced hepatotoxicity by reversing these expression changes.
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Background
The liver plays an important role in regulating various
physiological processes [1] and is involved in the detoxi-
fication of some drugs that may cause hepatotoxicity [2].
Carbon tetrachloride (CCl4) is a potent lipid-soluble
hepatotoxic agent. Oxidative stress induced by CCl4 can
cause cell damage and subsequent cell death, through
oxidation of cellular components, such as lipids, pro-
teins, and DNA [3]. CCl4 also produces peroxidative
degeneration of many tissues when bound to lipids and
proteins [4]. Exposure to CCl4 causes hepatocyte injury
through metabolic activation of reactive oxygen species
(ROS), such as superoxide anion, hydroxyl radicals,
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hydrogen peroxide, and other radicals generated during
numerous metabolic reactions [5]. ROS are thought to
be a major cause of this tissue damage. Oxidative stress
resulting from increased free radical production after
CCl4 administration may play an important role in the
degenerative processes in the tissues [6]. It has been ob-
served that the toxicity of CCl4 probably depends on the
formation of the trichloromethyl radical (CCl3), which
forms the more toxic CCl3O2 in the presence of oxygen
[7]. ROS can induce tissue injury via lipid peroxidation,
and enhance liver fibrosis by increasing tissue inhibitors
of metalloproteinases (TIMP-1), which leads to an in-
crease in collagen synthesis and accumulation [8, 9].
The acute and chronic phases of inflammation are

characterized by specific humoral and cellular immune
responses [10, 11]. The immune response is regulated by
a complex network of cytokines and cytokine inhibitors
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[12]. Under normal conditions, cytokine inhibitors serve
as immuno-modulators that limit the deleterious effects
of excess inflammatory reactions [13]. Under pathologic
conditions, anti-inflammatory mediators may provide
insufficient control over pro-inflammatory activities or
overcompensate and inhibit the immune response, ren-
dering the host at risk from systemic infection [14].
Cytokine production can be stimulated by the activation
of nuclear factor kappa β (NFκβ) and activator protein-1
(AP-1), which control physiological processes such as
cell differentiation and proliferation [15]. Additionally,
tumor necrosis factor alpha and interleukin-1 (IL-1) can
lead to the activation of NFκβ expression [16] through
phosphorylation of NFκβ signaling [17]. Cytokines pro-
vide hepato-protection in a variety of liver-injury models
involving peroxidative degeneration of many tissues [18,
19]. Interleukin-6 (IL-6) is an inflammatory cytokine that
regulates multiple biologic activities including the induc-
tion of acute-phase proteins in the liver [20]. In animal
models of hepatotoxicity, IL-6 acts on hepatocytes to
stimulate liver regeneration and repair. Secreted IL-6
binds to its receptor through the gp130 receptor,
activating JAK. Activated JAK triggers the mitogen-
activated protein kinases pathway, which is activated by
SHP2–GRB2-SOS–Ras signal transduction, and triggers
the STAT3 pathway, which is activated through JAK-
mediated tyrosine phosphorylation. In this manner the
STAT3 transcription factor dimerizes and translocates
to the nucleus, where it activates the transcription of
some target genes. In the liver, this process promotes liver
regeneration, the acute-phase response and hepato-
protection against Fas and toxic damage [21]. The acti-
vation of the caspase cascade, which results from the
interaction of Fas with its receptor, is blocked by IL-6
and STAT3 through the up-regulation of pro-apoptotic
genes [22].
The common mechanisms of hepato-protection tar-

get either Fas-mediated or toxin-mediated acute liver
injury. Immune response-mediated liver damage occurs
via the binding of specific ligands to their correspond-
ing receptors, activating the Fas apoptotic pathway.
Fas-associated protein with death domain is apoptotic and
is implicated in innate immunity, inflammation, and
tumor development [23]. B-cell lymphoma 2 (Bcl-2) gene
family members are important regulators of apoptosis:
intense inflammation induces pro-apoptotic proteins, with
inhibition of anti-apoptotic Bcl-2 [24].
CCl4 is a xenobiotic used to study hepatotoxicity in

animal models by initiating lipid peroxidation and
inflammation [25]. The bio-activation of the phase I
cytochrome P450 system, induced by CCl4, may cause
acute and chronic tissue injury through the formation
of reactive metabolic trichloromethyl radicals. These
radicals react with sulfhydryl groups (glutathione and
protein thiols) and antioxidant enzymes. The over-
production of trichloromethyl free radicals enhances
membrane lipid peroxidation, ultimately leading to liver
steatosis, fibrosis, or cirrhosis [26].
Flavonoids are found in fruits, vegetables, and medi-

cinal plants and have an important role in the detoxifica-
tion of free radicals [27, 28]. Rutin, a flavonoid glycoside,
protects against CCl4-induced liver injuries in rats [25].
Khan et al. showed that the administration of two differ-
ent doses of rutin, 50 and 70 mg/kg, after 48 h of treat-
ment with 3mL/kg of 30 % CCl4 twice a week for 4
weeks, increased levels of endogenous liver antioxidant
enzymes such as catalase superoxide dismutase, glutathi-
one peroxidase, glutathione-S-transferase, glutathione
reductase, and glutathione contents; and decreased lipid
peroxidation [25]. Our recent study showed that CCl4
administration causes aberrations in the expression of
genes involved in the oxidative stress pathway, resulting
in DNA damage and hepatotoxicity. Rutin protects
against this by enhancing antioxidant genes [29].
Furthermore, rutin has antitumor activity via its cyto-
toxic effects on SW480 cells; ameliorates the toxic
effects of SW480 tumors in mice; and exerts anti-
angiogenic properties [30]. The anti-inflammatory proper-
ties of rutin also counter the increased expression levels of
inflammatory markers induced by a high-cholesterol diet
[31]. The anti-mutagenic potential of rutin has been stud-
ied and it is suggested that rutin is chemo-preventive of
phospholipase A2-mediated mutagenesis of heterocyclic
amines [32].
The aim of the present study is to assess whether rutin

prevents CCl4-induced hepatotoxicity in rats via the IL-
6/STAT3 pathway, as well as to investigate the effective-
ness of rutin against CCl4-hepatotoxicity.

Methods
CCl4 and rutin were purchased from Sigma Chemicals
(Sigma Aldrich Louis, MO, USA). The SYBR® Green PCR
Master Mix kit was purchased from Applied Biosystems
(Life Technologies, Grand Island, NY, USA) and primers
used in this study were designed using Primer Express 3.0
software (Applied Biosystem, Life Technologies, Grand
Island, NY, USA)) and synthesized by Metabion Company
(Metabion international AG, semmelweisstrasse 3, pla-
negg/steinkirchen Germany).

Animals
Six-week-old male Wistar rats (average body weight
180–200 g) were obtained from the Animal Care
Center, College of Pharmacy, King Saud University,
Riyadh, Saudi Arabia. The animals were kept under
standard conditions of temperature (22 ± 1 °C), humid-
ity (50–55 %), and a 12-h light: dark cycle, with free
access to standard laboratory feed and water, according
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to the study protocol. All methods were conducted in ac-
cordance with the Guide for Care and Use of Laboratory
Animals, Institute for Laboratory Animal Research,
National Institute of Health (NIH publication No. 80–23;
1996). The study was approved by the Research Ethics
Committee of the College of Pharmacy (number 140/
2014), King Saud University, Riyadh, Saudi Arabia.

Experimental design
The experimental design follows Khan et al. [25]. Forty
adult male Wistar rats were randomly divided into four
groups of 10 animals each as follows.
Group I, the control group, received 3 mL/kg olive oil

(intraperitoneally; Monday and Thursday) and 3 mL/kg
DMSO (intragastrically using gavage) twice a week for 4
weeks (Saturday and Wednesday).
Group II, the rutin group, was intragastrically treated

with 70 mg/kg rutin in DMSO twice a week for 4 weeks
(Saturday and Wednesday).
Group III, the CCl4 group, was intraperitoneally treated

with 3 mL/kg CCl4 (30 % in olive oil) twice a week (Mon-
day and Thursday) for 4 weeks.
Group IV, the CCl4-rutin group, intragastrically received

70 mg/kg rutin, after 48 h of CCl4 treatment, twice a week
(Saturday and Wednesday) for 4 weeks.
At least 24 h after the last treatment protocol, all

animals were exposed to ether and killed by decapita-
tion. The blood samples were obtained and the sera
were separated and kept at −80 °C until used for the
bioassays. The liver was immediately removed then
washed with ice-cold saline solution. Part of the liver
was snap frozen in liquid nitrogen and stored until
used for the gene expression analysis.

Bioassays
The serum levels of liver enzymes (aspartate amino-
transferase (AST), alanine aminotransferase (ALT)) were
estimated using commercially available diagnostic kits
(Human, Wiesbaden, Germany).

Detection of gene expression in liver tissue with real-time
PCR
Total RNA extraction
Total RNA was extracted from liver tissues using TRIzol
method according to the manufacturer’s protocol. In
brief, RNA was extracted by homogenization (Omni,
Omni International, USA) in TRIzol reagent (Invitrogen,
Life Technologies, USA) at maximum speed for 90–120
s. The homogenate was then incubated for 5 min at
room temperature. A 1:5 volume of chloroform was
added, and the tube was vortexed and centrifuged at 12
000 g for 15 min. The aqueous phase was isolated, and
the total RNA was precipitated with absolute ethanol.
After centrifugation and washing, the total RNA was
finally eluted in 20 μL of the RNase-free water. The
RNA concentrations and purity were measured with an
ultraviolet spectrophotometer (NanoDrop 8000, Thermo
Scientific, USA). The extracted RNA had a 260:280 ratio
of 1.9–2.1.

Complementary DNA synthesis and real-time quantitative PCR
The cDNA was synthesized from 1 μg RNA using Super-
Script III First-Strand Synthesis System as described in the
manufacturer’s protocol (Invitrogen, Life Technologies). In
brief, 1 μg of total RNA was mixed with 50 μM oligo
(dT)20, 50 ng/μL random primers, and 10 mM dNTP mix
in a total volume of 10 μL. The mixture was incubated at
56 °C for 5 min, then placed on ice for 3 min. The reverse
transcriptase master mix containing 2 μL of 10× RT buffer,
4 μL of 25 mM MgCl2, 2 μL of 0.1 M DTT, and 1 μL of
SuperScript® III RT (200 U/μL) was added to the mixture
and was incubated at 25 °C for 10 min followed by 50 min
at 50 °C.
Real-time quantitative PCR (SYBR® Green PCR Master

Mix kit) was used to detect the expression levels of IL-6,
MEK5, FADD, EGF, STAT3, JAK, Bcl2, and Bcl-XL genes
in the liver tissue. The reaction was performed on an
ABI 7500 Detection System (Applied Biosystems, Life
Technologies, Grand Island, NY, USA)). The program
was set to run for one cycle at 95 °C for 2 min, followed
by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. The
specificity of the PCR amplification was confirmed by
melting curve analysis. GAPDH was used as an internal
control for qRT-PCR. The primers used in this study are
listed in Table 1. The results of gene expression were an-
alyzed using the 2-ΔΔCT method [29]. The data were
expressed as mean fold changes ± standard error for
three independent amplifications.

Statistical analyses
The differences between the obtained values (mean
± SEM, n = 10) was assessed with one-way analysis of vari-
ance followed by the Tukey–Kramer multiple comparison
using Graph pad prism 5 software (GraphPad Software,
Inc., La Jolla, CA, USA) The differences were considered
statistically significant when p < 0.05.

Results
The liver enzymes (ALT and AST levels) in sera were used
as biochemical markers for early acute hepatotoxicity. The
CCl4 group showed a significant increase in the levels of
AST (65 ± 1.2 U/L) Fig. 1a and ALT (72 ± 2.2 U/L) Fig. 1b
compared with the control group (23.5 ± 1.8 U/L and 24.2
± 1.3 U/L, respectively) (p < 0.001). However, rutin re-
stored levels of biomarkers of CCl4-induced hepatic dam-
age to their normal values, as indicated by the control
group.



Table 1 Primers used in real-time PCR

Gene name Forward primer Reverse primer

IL-6 5′-ATCTGCCCTTCAGGAACAGC-3′ 5′-AGCCTCCGACTTGTGAAGTG-3′

STAT3 5′-CAAAGAAAACATGGCCGGCA-3′ 5′-GGGGGCTTTGTGCTTAGGAT-3′

JAK-1 5′-ATGGAGTTTCTGCCTTCGGG-3′ 5′-TTCTTGCTGCTAAGTCCCGG-3′

MEK5 5′-TCGTGCCATGGAGAACCA-3′ 5′-CGCGCCACTATTTGGAATCT-3′

FADD 5′-CCAAACAAGTGCAAGAGCCC-3′ 5′-AGGATTGCAGAGTGAGCCAC-3′

Bcl2 5′-CTTCTCTCGTCGCTACCGTC-3′ 5′-CATGACCCCACCGAACTCAA-3′

BCL-XL 5′-CTTCTCTCGTCGCTACCGTC-3′ 5′-GTGAGGTGGAAGGGACCATG-3′

EGF 5′-TGTGGGCTGAGAAGAAGCTG-3′ 5′-GAGTACCAGATCTGCCGCTC-3′

GAPDH 5′-AACTCCCATTCCTCCACCTT-3′ 5′-GAGGGCCTCTCTCTTGCTCT-3′
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The effect of CCl4, rutin, and their combination on
IL-6 gene expression in liver tissues using RT-PCR is il-
lustrated in Fig. 1c. IL-6 expression in the CCl4 group
showed a significant increase of 130 % compared with
the control group (p < 0.01). The administration of rutin
alone resulted in a non-significant increase in the IL-6
level compared with the control group. Interestingly, the
CCl4-rutin group showed complete reversal of the CCl4-
induced increase and showed a significant decrease in
IL-6 gene expression level of 44 % (p < 0.02) compared
with CCl4.
Fig. 1 The Effect of CCl4, rutin, and their combination on the serum levels of
presented as mean ± SEM (n = 10). *, # and $ indicate significant change from
followed by Tukey–Kramer as a post ANOVA test
The effect of CCl4, rutin, and their combination on
MEK5 gene expression is shown in Fig. 2. Expression of
MEK5 in the CCl4 group increased significantly by
140 % (p < 0.002) compared with the control group. The
CCl4-rutin group showed a significant decrease in MEK5
expression of 50 % (p < 0.001) compared with the CCl4
group. This change in MEK5 was not significant (p < 0.8)
compared with the control group.
The effect of CCl4, rutin, and their combination on

FADD gene expression is illustrated in Fig. 3. The CCl4
group showed an increase in FADD expression of 150 %
AST (a), ALT (b) and expression levels of IL6 in rat liver (c). Data were
control, rutin and CCl4 plus rutin, respectively, at P < 0.05 using ANOVA



Fig. 2 The Effect of CCl4, rutin, and their combination on the
expression levels of MEK5 gene in rat liver. Data were presented as
mean ± SEM (n = 10). *, # and $ indicate significant change from
control, rutin and CCl4 plus rutin, respectively, at P < 0.05 using
ANOVA followed by Tukey–Kramer as a post ANOVA test
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(p < 0.0002) compared with the control group, and of
108 % (p < 0.007) compared with the rutin group. How-
ever, the rutin-CCl4 group showed a complete reversal
of the FADD expression increase. This reversal resulted
in a significant decrease in FADD expression by 40 %
(p < 0.007) compared with the CCl4 group.
The effect of CCl4, rutin, and their combination on

Bcl2 and Bcl-XL expression is shown in Fig. 4 (a & b). In
the CCl4 group, Bcl2 expression significantly decreased
(68 %; p < 0.03) and Bcl-XL expression level increased
Fig. 3 The Effect of CCl4, rutin, and their combination on the
expression levels of FADD gene in rat liver. Data were presented as
mean ± SEM (n = 10). *, # and $ indicate significant change from
control, rutin and CCl4 plus rutin, respectively, at P < 0.05 using
ANOVA followed by Tukey–Kramer as a post ANOVA test
(430 %; p < 0.001) compared with the control group. The
CCl4-rutin group showed complete reversal of the Bcl-
XL increase and a significant increase in Bcl2 expression
levels of 99 % compared with the control group. This
reversal involved a significant increase in Bcl2 expression
of 522 % (p < 0.003) and a significant decrease in Bcl-XL
expression of 70 % (p < 0.0001) compared with the CCl4
group.
The effect of CCl4, rutin, and their combination on

EGF expression level is shown in Fig. 5. EGF expression
decreased significantly in the CCl4 group compared
with the control group (75 %; p < 0.02) and the rutin
group (79 %; p < 0.005). In the CCl4-rutin group, EGF
expression was completely restored to its normal levels,
observed as a significant increase in EGF expression of
Fig. 4 The Effect of CCl4, rutin, and their combination on the
expression levels of Bcl2 (a) and Bcl-xl (b) genes in rat liver. Data
were presented as mean ± SEM (n = 10). *, # and $ indicate significant
change from control, rutin and CCl4 plus rutin, respectively, at P < 0.05
using ANOVA followed by Tukey–Kramer as a post ANOVA test



Fig. 5 The Effect of CCl4, rutin, and their combination on the
expression levels of EGF gene in rat liver. Data were presented as
mean ± SEM (n = 10). *, # and $ indicate significant change from
control, rutin and CCl4 plus rutin, respectively, at P < 0.05 using
ANOVA followed by Tukey–Kramer as a post ANOVA test

Fig. 7 The Effect of CCl4, rutin, and their combination on the
expression levels of JAK gene in rat liver. Data were presented as
mean ± SEM (n = 10). *, # and $ indicate significant change from
control, rutin and CCl4 plus rutin, respectively, at P < 0.05 using
ANOVA followed by Tukey–Kramer as a post ANOVA test
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600 % (p < 0.0003) compared with the CCl4 group,
restoring it to 75 % (p < 0.03) of control group levels.
Figure 6 shows the effect of CCl4, rutin, and their

combination on STAT3 expression. In the CCl4 group,
there was a significant increase in STAT3 expression by
99 %, compared with the control group (p < 0.006).
Whereas administration of rutin in combination with
CCl4 significantly decreased the STAT3 expression to
40 % of the CCl4 group levels (p < 0.04).
Figure 7 shows the effect of CCl4, rutin, and their

combination on JAK gene expression in liver tissues. In
the CCl4 group, there was a significant increase the JAK
expression of 150 % (p < 0.005) compared with the con-
trol group. The supplementation of rutin in combination
Fig. 6 The Effect of CCl4, rutin, and their combination on the
expression levels of STAT3 gene in rat liver. Data were presented as
mean ± SEM (n = 10). *, # and $ indicate significant change from
control, rutin and CCl4 plus rutin, respectively, at P < 0.05 using
ANOVA followed by Tukey–Kramer as a post ANOVA test
with CCl4 resulted in complete reversal of the CCl4
effect: JAK expression returned to its normal values.
This reversal was observed as a significant decrease in
JAK expression of 48 % (p < 0.05) compared with the
CCl4 group. In the rutin group, an insignificant increase
in JAK expression compared with the control group was
observed.

Discussion
The liver is the first line of protection against damage,
which may lead to hepatic necrosis and apoptosis,
induced by xenobiotics and drugs [33]. The release of
hepatocellular leakage enzymes is used as a marker for
hepatotoxicity. CCl4 is widely used to investigate the
liver injury that is associated with oxidative stress and
free radicals. The reactive oxygen species induced by
CCl4 not only cause direct tissue damage, but also
initiate inflammation through the activation of various
cytokines [34].
Several studies have focused on the prevention of

CCl4-induced hepatotoxicity [35–37]. The current
study showed significant increases in the serum levels
of ALT and AST as a result of CCl4 administration.
This agrees with previous studies that demonstrated
significant increases in ALT and AST levels in CCl4-
treated rats and mice compared with untreated ones
[38–40]. This increase in liver enzymes may be owing
to acute hepatocyte injury caused by CCl4 [41]. Rutin
has been shown to have hepato-protective activity, pos-
sibly protecting the liver from CCl4-induced injury, as
rutin given after CCl4 significantly restores the elevated
AST and ALT levels. Similarly, previous studies have
reported the protective effect of flavonoid compounds
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against a high-cholesterol diet and CCl4-induced hep-
atotoxicity [25, 42].
Immune-mediated liver damage occurs via the activa-

tion of the Fas apoptotic death pathway. The link
between Fas-mediated damage and the induction of
ROS with oxidative stress has been established [43].
The apoptotic pathway is initiated when specific ligands
bind to their corresponding receptors. The FADD is an
adaptor transmitting apoptotic signals mediated by the
death receptors (DR), which lead to two cell death
pathways [23]. The death-inducing signaling complex is
composed of FADD and procaspase-8, and facilitates
the activation of both procaspase-8 and −10 [44]. Their
activation leads to proteolytic stimulation of caspase-3,
−6, and −7, which can cleave intracellular substrates
[44, 45]. In the present study, FADD was significantly
increased in the CCl4 group. Similarly, Jiang et al.
found that the administration of 1 mL/kg of CCl4 in
olive oil twice a week for 4 weeks led to a significant
increase in the expression of FADD compared with
the olive oil-only control group [46]. Similarly, CCl4
increases expression of Fas/FasL and increases the
activities of caspase-3 and-8 and cytochrome P4502E1,
which leads to liver apoptosis [47]. Fas binds to its lig-
and and forms the death-inducing signaling complex
via FADD and then activates caspase-8, which leads to
activation of caspase-9 and −3 [48]. The reduced FADD
gene expression as a result of rutin supplementation
indicates that rutin decreases the CCl4-induced hepatocel-
lular damage that might be through its anti-apoptotic
effect.
The Bcl2 family members are important regulators for

apoptosis and inflammation [24]. In CCl4-induced hep-
atotoxicity, genes for JNK play an essential role in
modulating the pro- and anti-apoptotic proteins located
in the mitochondria. JNK, together with ROS, can
stimulate pro-apoptotic proteins and can promote apop-
tosis by inhibiting anti-apoptotic proteins [49, 50]. In the
current study, the suppression of Bcl2 expression, as a
result of CCl4, leads to hepatotoxicity and apoptosis.
The increased Bcl2 gene expression in liver tissue after
rutin supplementation in CCl4-treated rats suggests that
rutin may protect against CCl4-induced hepatotoxicity
by regulating JNK signaling and mitochondrial intrinsic
apoptotic pathways. A similar study has found that CCl4
reduced Bcl2 expression in association with increased
Bax expression and Bax/Bcl2 ratio [51]. Furthermore,
rutin can cause tumor cell apoptosis through a decrease
in Bcl2 expression and the Bax/Bcl2 ratio [52]. These
results suggest that the key role of rutin in inducing the
apoptosis of tumor cells is through the regulation of the
Bcl2/BAX balance.
Cytokine production in the liver depends on the ini-

tial induction of early-response cytokines [53]. IL-6
helps hepatic survival by stimulating liver recovery and
gives hepato-protection [18, 19]. The binding of IL-6 to
its receptor (IL-6R) prompts STAT3 pathway activation
through binding to glycoprotein 130 (gp130). Another
alternative pathway is via the IL-6 signal (IL-6 trans-
signaling) [54]. IL-6 acts as both a pro- and an anti-
inflammatory cytokine and may mediate liver damage
through different pathways. In the current study, CCl4
significantly upregulated IL-6 expression, whereas rutin
administration suppressed this change, which may
be because of its anti-inflammatory activity. A similar
study in rats showed that curcumin supplementation
suppressed CCl4-induced IL-6 production by the pre-
vention of pro-inflammatory cytokine secretion [55].
Elevated levels of IL-6 are associated with disease states
[40]. The soluble form of IL-6R, in addition to the
membrane-bound receptor, binds to IL-6 and prolongs
its plasma half-life [56]. The soluble IL-6R has roles in
cellular proliferation, differentiation, and activation of
inflammatory responses [57, 58]. Signal transducer and
activator of transcription-3 mediates signal transduc-
tion and is regulated by IL-6 [21]. The IL-6/IL-6R com-
plex promotes the initiation of STAT3 by JAK,
resulting in DNA binding of STAT3 [59, 60].
STAT3 and its upstream JAK signaling mediates the

immune responses of various cytokines and participates
in inflammation, cell growth, and metastasis [61]. IL-6/
STAT3 can be activated by other cytokines such as IL-11
[62]. The fully activated STAT3 regulates gene transcrip-
tion of anti-apoptotic (Bcl-XL) [63, 64] and proliferation
(cyclin D1 and Myc) regulatory proteins [65, 66]. In the
current study, CCl4 increased the expression of STAT3,
which led to Bcl2 down-regulation and Bcl-XL up-
regulation. Similarly, another study reported that the
activation of STAT3 increases Bcl2 mRNA and protein
expression [63]. The activation of Bcl-X produces two
different Bcl-XL proteins. The longer form Bcl-X (Bcl-
XL) becomes a repressor of apoptosis, whereas the
shorter form (Bcl-XS) can enhance apoptosis [67, 68].
Administration of rutin in combination with CCl4 resulted
in suppression of STAT3 and over-expression of Bcl2,
which reduces the apoptosis. Similarly, rutin inhibits in-
flammatory responses in ultraviolet-irradiated mouse skin
by inhibiting the levels of phosphorylated STAT3 [69].
This indicates that rutin may play an important role in
protection against CCl4-induced hepatotoxicity.
Many inflammatory cytokines play important roles in

regulating liver fibrogenesis [70]. IL-6, interferon-γ (IFN-
γ), IFN-α/β, and IL-22 are involved in MEK5-ERK5 and
JAK-STAT3 pathway activations [71, 72]. The increased
expression of MEK5 and JAK in the CCl4-treated group,
and the restoration to control levels after treatment with
rutin, suggests that genes related to both the JAK-STAT3
and the MEK5-ERK5 pathways were overexpressed as a
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result of IL-6 expression in response to CCl4-induced hep-
atotoxicity. A similar study has shown CCl4-induced IL-6
activation is associated with an increase in MEK5, ERK5,
JAK, and STAT3 expression prior to cirrhosis. These alter-
ations can be reversed by silymarin treatment, thus lower-
ing liver cirrhosis [73]. Several studies have revealed that
the activation of the JAK-STAT pathway by cytokines has
been shown to regulate fibrogenic cytokines such as trans-
forming growth factor-β1 and connective tissue growth
factor [74], as well as enhancing liver fibrosis and cancer
[75–77].
Epidermal growth factor and its tyrosine kinase recep-

tor (EGFR) are proposed to have essential roles in liver
regeneration and transformation [78, 79]. EGF and
EGFR are highly elevated in human cirrhotic livers [80].
Activated EGF, with other cytokines, stimulates the pro-
duction of TIMP-1 [81]. TIMP-1 is expressed during
liver injury by the activated hepaticstellate cells and
Kupffer cells that are the major sources of TIMP-1 [82].
In the present study, CCl4 increases TIMP-1 expression
so EGF expression decreases, leading to liver fibrosis
due to the accumulation of collagen in the liver. Simi-
larly, in mice, the mRNA and protein expression of EGF
were significantly decreased during liver injury by CCl4
but increased during repair [83]. Another study showed
a significant increase in EGF expression in rats during
the course of cirrhosis development [84]. The expression
levels of TIMP-1 in hepatocytes during CCl4-induced
hepatotoxicity are controlled by STAT3. A similar study
has suggested that STAT3 activation in hepatocytes plays
an important role in induction of TIMP-1 during liver
injury [85]. Therefore, rutin administration enhanced
collagen-lysis activity as a result of the decrease in EGF
expression and the corresponding decrease in TIMP-1
expression. In another study, rutinwas directly bounded
with EGFR and down-regulated its protein levels [86].
Conclusion
This study demonstrates that rutin has potent protective
effects against CCl4-induced hepatotoxicity by restoring
the alteration in expression of genes in the IL-6/STAT3
pathway through its anti-apoptotic, anti-inflammatory and
anti-oxidant effects. This study suggests that rutin may be
used as an alternative treatment for liver diseases.
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