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Schizophrenia and reelin: a model based 
on prenatal stress to study epigenetics, brain 
development and behavior
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Abstract 

Schizophrenia is a severe psychiatric disorder that results in a significant disability for the patient. The disorder is 
characterized by impairment of the adaptive orchestration of actions, a cognitive function that is mainly depend‑
ent on the prefrontal cortex. This behavioral deficit, together with cellular and neurophysiological alterations in the 
prefrontal cortex, as well as reduced density of GABAergic cells and aberrant oscillatory activity, all indicate structural 
and functional deficits of the prefrontal cortex in schizophrenia. Among the several risk factors for the development of 
schizophrenia, stress during the prenatal period has been identified as crucial. Thus, it is proposed that prenatal stress 
induces neurodevelopmental alterations in the prefrontal cortex that are expressed as cognitive impairment observed 
in schizophrenia. However, the precise mechanisms that link prenatal stress with the impairment of prefrontal cortex 
function is largely unknown. Reelin is an extracellular matrix protein involved in the development of cortical neural 
connectivity at embryonic stages, and in synaptic plasticity at postnatal stages. Interestingly, down‑regulation of reelin 
expression has been associated with epigenetic changes in the reelin gene of the prefrontal cortex of schizophrenic 
patients. We recently showed that, similar to schizophrenic patients, prenatal stress induces down‑expression of reelin 
associated with the methylation of its promoter in the rodent prefrontal cortex. These alterations were paralleled with 
altered prefrontal cortex functional connectivity and impairment in prefrontal cortex‑dependent behavioral tasks. 
Therefore, considering molecular, cellular, physiological and behavioral evidence, we propose a unifying framework 
that links prenatal stress and prefrontal malfunction through epigenetic alterations of the reelin gene.
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Background
Schizophrenia is a chronic psychiatric disorder that 
affects 0.5–1 % of the world’s population. It is character-
ized by a complex set of disturbances of thought, percep-
tion, and affective and social behavior that result in high 
social disability [1]. Although the causes of this disorder 
are not completely understood, clinical research has iden-
tified some factors that provide insight into the patho-
physiology of this disease [2]. For example, schizophrenia 
is characterized by impairment of cognitive functions 
dependent on the prefrontal cortex (PFC; [3]), which 

coincides with cellular and neurophysiological alterations 
observed in the PFC of schizophrenic patients [4, 5]. It 
is also known that prenatal stress (PNS) is an important 
etiologic factor for the development of this disorder [6], 
which implies that PNS induces neurodevelopmental 
alterations in the PFC that are manifested as cognitive 
alterations observed in schizophrenic patients. In this 
review, we propose that PNS-induced epigenetic changes 
in the reelin gene, which codes for an extracellular pro-
tein involved in cortical development, could be a molecu-
lar link between prenatal stress and PFC dysfunction.

The deficit in cognitive control in schizophrenia 
suggests functional impairment of PFC function
The symptomatology of schizophrenia has provided 
some clues about the neurophysiology of the disorder. 
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Symptoms are classified as cognitive, positive, and neg-
ative [1]. Among these symptoms, cognitive impair-
ments are especially relevant because they impact on 
the normal life performance of patients. These cognitive 
impairments, like reduced working memory [3, 7–9], 
selective attention [10], and set-shifting [11], can be glob-
ally grouped as a detriment to executive control: i.e. the 
proper orchestration of thoughts and actions in accord-
ance with internal goals [12]. It has been suggested that 
the degree of cognitive impairments, and not the severity 
of psychosis, is the best predictor of long-term functional 
outcome for affected individuals, leading to the view that 
cognitive deficits are the core abnormalities of the illness 
[13, 14]. Thus, the deficit of executive control appears to 
be a hallmark of schizophrenia [3, 9, 15].

The PFC is considered the main brain area involved 
in executive control [12, 16]. The cognitive symptoms 
of schizophrenia suggest a functional impairment in the 
PFC as a core neurological dimension, a feature known 
as “hypofrontality” [3]. This functional deficit seems to be 
strongly related to altered neural oscillatory synchrony 
in the PFC [17–19], functional alterations that corre-
late with cognitive deficits in schizophrenic patients [4, 
20]. The gamma-frequency band (30–80  Hz), the most 
evident neurophysiological parameter affected in schiz-
ophrenia, is required for the implementation of execu-
tive control by the PFC [21, 22], suggesting that altered 
gamma oscillations are implicated in cognitive dysfunc-
tion [23]. It has been shown that transmagnetic stimula-
tion applied to the gamma-frequency band in the PFC 
alleviates cognitive symptoms in some schizophrenic 
patients [24].

The PFC of schizophrenic patients also displays pro-
found alterations at the cellular level, like a reduction of 
the mean clustering distance between cells by alterations 
in neuropile volume [25]. It has also been observed that 
schizophrenics have fewer dendritic spines in pyramidal 
neurons than non-schizophrenic post-mortem subjects 
[26]. However, the inhibitory GABAergic neurons seem 
to be the most affected neuronal population in the PFC 
of schizophrenic patients. One of the most consistent 
findings in postmortem studies in the PFC of individuals 
with schizophrenia is the reduced mRNA expression of 
GAD67, the enzyme that synthesizes GABA [27]. In addi-
tion, reduced density of GABAergic cells, and decreased 
amounts of inhibitory axon terminals have been found 
post-mortem in the PFC of schizophrenic patients [5, 
28, 29]. This evidence has led to consider schizophre-
nia as a disease of impaired inhibitory transmission in 
the PFC [30–32]. Given that GABAergic interneurons 
are strongly implicated in the emergence of gamma-
frequency oscillations in cortical networks [33–35], this 
evidence suggests that cellular impairments may underlie 

neurophysiological PFC alterations related to cognitive 
impairment in schizophrenia [32].

The effects of prenatal stress on the PFC as a 
neurodevelopmental factor for schizophrenia
Some cognitive and neurophysiological alterations 
observed in schizophrenic patients are evident dur-
ing early childhood, before patients manifest diagnosed 
symptoms [36–39]. This, together with the prenatal 
development of cellular components altered in schizo-
phrenia, like cortical microcircuit connectivity and 
GABAergic transmission [26, 40, 41], all suggest that 
schizophrenia can also be considered a neurodevelop-
mental disorder, especially focused on the development 
of the PFC [38, 42, 43]. Thus, current evidence indicates 
that neurodevelopmental cellular alterations in the PFC, 
particularly those related to inhibitory transmission, is 
associated to abnormal functional connectivity in the 
PFC, resulting in an impairment of executive functions in 
schizophrenic patients [43]. But, how are these neurode-
velopmental alterations in the PFC acquired?

Among the several acquired and environmental fac-
tors involved in the development of schizophrenia [44], 
the suffering of threatening situations by the pregnant 
mother during gestation, i.e. PNS, has been considered 
a strong environmental risk factor [6]. In support of this 
idea, it has been shown that the number of individuals 
with diagnoses of schizophrenia is significantly higher 
among individuals with prenatal loss of their fathers than 
among individuals whose fathers died during their first 
year of childhood [45]. Accordingly, van Os and Selten 
[46] found a higher cumulative incidence of schizo-
phrenia among individuals prenatally exposed to the 
1940 invasion of the Netherlands by the German army, 
suggesting that maternal stress during pregnancy may 
contribute to the development of vulnerability to schiz-
ophrenia. Similarly, Betts et  al. [47] showed that stress-
ful prenatal life events predicted psychotic experiences 
in adulthood. Finally, Levine et  al. [48] found that PNS 
associated to exposure to the holocaust constitutes a con-
sistent risk factor for schizophrenia. Thus, taking in con-
sideration the essential role of PNS as a development risk 
factor for schizophrenia, and that this disorder is charac-
terized by functional impairment of the PFC, two critical 
questions arise: (1) Does PNS produce functional impair-
ment of the PFC associated with schizophrenia? And if 
so, (2) How does this process occur?

It has been shown in humans that stressing situations 
experienced by the mother during pregnancy affect PFC-
dependent cognitive functions of the offspring, like work-
ing memory, control of anxiety, and learning strategies 
[49–52]. Similarly, research in rodents have shown that 
PNS affects cognitive functions dependent on the limbic 



Page 3 of 10Negrón‑Oyarzo et al. Biol Res  (2016) 49:16 

and prelimbic cortex, (the rodent homologue and ana-
logue to the human PFC [53]), manifested as impairment 
of working memory [54], increase of aversive remote 
memory [55] (Fig.  1) or decreased recall of the extinc-
tion of conditioned fear [56]. These data indicate that 
PNS affects cognitive functions dependent on the PFC at 
adulthood [57, 58], which could be related to the patho-
genesis of schizophrenia [48, 59]. At a neurophysiologi-
cal level, PNS alters neuronal synchronization between 
the PFC and the hippocampus, connectivity relevant to 

the consolidation of memories [58, 60] together with 
a decreased firing rate in the PFC in  vivo [55] (Fig.  2). 
Coincidently, these neurophysiological alterations are 
paralleled with the persistence of aversive remote mem-
ory [53, 55] (Fig. 1), a PFC-dependent cognitive function 
[61].

At the cellular level, there is abundant evidence sug-
gesting that PNS affects the correct development of the 
PFC in rodents. For example, dendritic ramification of 
pyramidal neurons is disrupted in prenatally stressed 
adults rats [62], morphological alterations that are also 
evident during earlier developing stages like early child-
hood [63] and adolescence [64]. PNS not only affects 
pyramidal neurons in the PFC, but also the development 
of inhibitory neurons. For example, PNS decreases the 
number of PV+ interneurons in the PFC [65], and delays 
tangential migration of inhibitory neurons in the devel-
oping neocortex [64]. This is especially important since, 
as mentioned above, a reduction in inhibitory neuronal 
activity in the PFC has been proposed as an important 
physiopathological feature of schizophrenic patients 
[31, 32]. Altogether, these data suggest that PNS induces 
cellular neurodevelopmental alterations expressed as 
neurophysiological alterations in the PFC, as observed 
in schizophrenia [66]. However, the precise molecular 
mechanism by which PNS contributes to the develop-
ment of schizophrenia remains elusive.

Reelin as a molecular candidate for cellular 
alterations in schizophrenia
Among molecular candidates involved in the develop-
ment of schizophrenia [66–69], reelin seems to be an 
important link between prenatal stress and cellular and 
physiological alterations observed in schizophrenia. Ree-
lin is a 400~ kD extracellular matrix glycoprotein coded 
by a 450-bp gene located in the human chromosome 
7q22 and in the murine chromosome 5 [70]. The reelin 
gene has multiple cis elements, including for transcrip-
tion factors involved in neurodevelopment like Sp1, 
Tbr-1 and Pax6, and for signal transduction like CREB 
[71, 72]. The protein exerts its function through the 
union with the VLDLR and ApoER2 receptors. This cou-
pling elicits the intracellular phosphorylation and activa-
tion of the adaptor protein disabled 1 (mDab1), which 
initiates a signaling pathway that ends with the modula-
tion of the cytoskeleton of actin and microtubules [73]. 
Among the several molecular candidates for the physi-
opathology of schizophrenia (for review see [74]), clini-
cal and preclinical evidence indicates reelin is a relevant 
component [75–78]. Below we review the evidence that 
supports reelin as a molecular candidate for the cellular 
disruptions produced in schizophrenia.

Fig. 1 Prenatal stress produces long‑term persistence of spatial 
memory and decreases learning retention in a passive avoidance test. 
a Control and PNS mice were trained for 4 days to locate the escape 
in the Barnes maze test. Latency to find the escape was assessed 
1 (recent memory) and 10 days (remote memory) after training. 
Right panel example of tracking plots for 2 mice (Control and PNS) 
in the Barnes maze during recent and remote memory testing. Left 
panel bar chart showing the latency to escape for both groups of 
mice in the two memory conditions (*P < 0.05; Bonferroni post hoc 
after 2‑way ANOVA). b In the passive avoidance learning‑retention 
test, latency time to enter the dark chamber of the shuttle box was 
measured, where a mild foot shock was delivered on day 2. There 
were significant differences (Bonferroni post hoc after 2‑way ANOVA) 
in the latency time between control and PNS rats on days four and 
five post‑shock. Data are presented as mean ± SEM. Adapted from 
[55, 125]
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Reelin participates in prenatal development and shapes 
post‑natal neural connectivity in the neocortex
Reelin protein is expressed in mammals during brain 
development, principally by Cajal-Retzius neurons in 
superficial layers of the neocortex and the hippocampus 
[79–81]. In rodents, cortical and hippocampal Cajal-
Retzius neurons degenerate progressively to postnatal 
day 14 [82, 83], limiting the production and secretion of 
reelin to GABAergic interneurons from postnatal day 8 
to adulthood [83–85]. The role of reelin in neurodevel-
opment has been well demonstrated, especially by regu-
lating the radial migration of excitatory neurons and the 
establishment of the “inside-out” neurogenetic gradient 
[73, 86–88]. The reeler mouse (homocygote knock-out 
for reelin, and thereby deficient for reelin; [89]), has a 
clear disruption of cortical layers. In addition it has been 
demonstrated that reeler mice display an aberrant dispo-
sition of inteneurons in the neocortex [90, 91], and that 
positioned neurons fail to connect to each other and to 

form a correct cortical architecture [73, 80, 92]. On the 
other hand, the heterozygous reeler mouse (HRM), which 
has 50 % expression of reelin and is used as a model for 
schizophrenia [93], does not have the inversion of the 
cortical layers observed in homozygous reeler mice [94]. 
However, it has reduced dendritic length and complexity 
and spine density compared with wild type animals [95, 
96]. Importantly, the HRM mouse also displays decreased 
cortical GABA biosynthesis [97] and decreased cortical 
GAD67 [96, 98].

Reelin also participates in the remodeling of neuronal 
connectivity in the adult brain modulating synaptogen-
esis [99], synaptic plasticity [100–104] and neurotrans-
mitter release [105]. The HRM display a decrease in spine 
density in parallel to lack of NMDA receptor dependent 
long-term potentiation in the PFC [106]. Furthermore, 
in vivo enhancement of reelin signaling increases cogni-
tive ability, synaptic plasticity, and dendritic spine den-
sity [103]. Altogether, this evidence indicates that reelin 

Fig. 2 Prenatal stress decreases firing rate in the PFC and disrupts functional connectivity between the PFC and hippocampus. Control and PNS 
mice were subjected to in vivo local field potential recording under urethane anesthesia in the hippocampus and PFC, after either recent or remote 
memory testing in the Barnes maze. a Representative recordings for each group and condition displaying the hippocampal LFP filtered at 100–
300 Hz (upper) and its correlative prefrontal LFP filtered at 300–5 Hz (lower). Asterisks indicate sharp wave ripples (SWR) cross‑correlated with spikes 
from PFC cells. b Mean firing rate of spontaneously firing neurons in the PFC (**P < 0.01; Mann–Whitney U test). Data are shown as mean ± SEM. 
c Mean normalized cross‑correlation between significantly correlated PFC single units to hippocampal SWRs. Note the significant difference of 
discharge in the PFC 200 ms after the ripple onset in remote memory in PNS group (*P < 0.05; Wilcoxon signed rank test). Data are presented as 
mean ± SEM. Adapted from [55]
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modulates cortical neuronal connectivity in both pre- 
and postnatal stages.

Reduced expression of reelin and hypermethylation of the 
reelin promoter is found in the PFC of schizophrenic 
patients
Impagnatiello et  al. [107] were the first to report that 
reelin mRNA and protein expression were significantly 
lower in the PFC of post-mortem schizophrenic patients. 
This reduction in reelin expression reached 50 %, and was 
especially evident in superficial cortical layers [107]. This 
finding was later replicated by others [76, 108–110].

In recent years it has been proposed that epigenetic 
mechanisms like DNA methylation play an important 
role in the gene-environment interaction in the devel-
opment of psychiatric disorders, including schizophre-
nia [111–113]. It has been shown that the promoter of 
the reelin gene, together with sequences flanking exon 
1, contains near 120 CpG islands [114]. The reelin pro-
moter in in  vitro assays is methylated in non-reelin 
expressing cells, and demethylated in reelin expressing 
cells [114], indicates that reelin expression is controlled 
by the methylation of its promoter. The reelin promoter 
is hypermethylated in the brain of schizophrenic post-
mortem patients [39, 72, 115–117]. This reduction of 
reelin and hypermethylation of its promoter in schizo-
phrenic patients is restricted to GABAergic neurons 
in the PFC [118]. Thus, the down-regulation of ree-
lin expression documented in schizophrenic patients 
might be the consequence of inappropriate promoter 
hypermethylation [114], especially in GABAergic 
neurons.

Reduced expression of reelin in animal models produces 
schizophrenic‑like features
Genetic animal models in which the expression of ree-
lin is decreased display cognitive, physiological and cel-
lular features similar to those found in schizophrenic 
patients. For example, reeler mice show increased cog-
nitive impairment and stereotypic behavior [98]. Impor-
tantly, the HRM displays a deficit in PFC-dependent 
cognitive abilities, such as reversal learning and recall of 
fear extinction [106, 119], together with impairment in 
the acquisition of operant tasks [120] and increased anxi-
ety [121]. Moreover, overexpression of reelin prevents 
the manifestation of behavioral phenotypes related to 
schizophrenia [122]. Although it has not been as heavily 
described as the reeler mice, the HRM also displays cel-
lular features in the PFC similar to those of schizophrenic 

patients, such as decreased GAD67 mRNA, GAD67 pro-
tein, and fewer GAD67 positive cells in the PFC [96, 119]. 
Finally, reelin knockdown animals specifically in the PFC 
show decreased working memory [123]. Together, this 
evidence suggests a critical role for reelin in the deficits 
observed in schizophrenia.

Interaction between PNS, reelin expression 
and PFC‑cognitive impairment observed 
in schizophrenia
Prenatal stress may induce DNA methylation of several 
gene promoters, including reelin [124]. Our research and 
that of others have shown that PNS in rodents reduces 
the expression of reelin in the PFC in adulthood [125, 
126] (Fig.  3), which is accompanied by increased meth-
ylation of the reelin promoter [125, 126] (Fig.  3). PNS-
induced own-regulation of reelin by DNA methylation 
is similar to that found in schizophrenic patients [115]. 
Together, this evidence places reelin and the epige-
netic regulation of its expression as likely targets for the 
development of PNS-induced neuropsychiatric pathol-
ogy. We have shown that PNS impairs cognitive func-
tions dependent on the PFC, such as the consolidation 
of memory and passive avoidance (Fig.  1; [55, 125]). In 
the first case, this behavioral impairment is paralleled 
with decreased neural activity in the PFC and altered 
neuronal synchrony between the PFC and hippocampus 
[55] (Fig.  2). Altogether, the evidence suggests a rela-
tionship between epigenetic alterations induced by PNS 
on the reelin gene, with PFC impairment observed in 
schizophrenia.

Conclusion
Considering molecular, histological, and physiologi-
cal evidence based on the PNS paradigm, we propose a 
model that links molecular, neurophysiological and cog-
nitive alterations observed in schizophrenia (Fig.  4). In 
this model, PNS-induced epigenetic modifications in 
the reelin promoter produce down-expression of ree-
lin during prenatal development [125, 126]. As several 
other researchers have shown, this results in the prena-
tal reduction of the number of interneurons synthesiz-
ing GABA, together with an aberrant layer positioning 
of cortical interneurons [31, 91, 127] and the reduction 
of dendritic length and complexity of pyramidal neu-
rons in the PFC [63, 95, 96]. Thus, PNS may impair the 
development of correct neuronal connectivity in the PFC 
before birth, which in subsequent developmental stages 
is expressed as an aberrant functional connectivity of the 
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neural network in the PFC, or between PFC and other 
structures [19, 55]. Finally, the alteration of the functional 
connectivity required to implement executive control by 
the PFC [21, 22] is evidenced as abnormal PFC-depend-
ent cognitive functions [4, 20, 23], which are a hallmark 
of schizophrenia [3, 9, 19].

Note however that this model does not imply that 
reelin is the only link between PNS and schizophrenia, 
as other PNS-regulated genes like GAD67 and BDNF 
[126, 128] may also impact on the symptomatology of 

schizophrenia. Finally, due to lack of experimental evi-
dence, this model has some gaps in important aspects. 
For example, it is unknown whether PNS affects the 
neurophysiological properties of GABAergic interneu-
rons and therefore, the proper functioning of the pre-
frontal neural network. It is also unknown how these 
cellular alterations induced by PNS affect the func-
tional connectivity within the PFC and between the 
PFC and other structures, specifically during the imple-
mentation of executive behavioral functions. Future 

Fig. 3 Prenatal stress reduces reelin expressing neurons and increases reelin methylation in the PFC. a Microphotographs of reelin‑expressing 
neurons in the PFC prenatally (E20). Control brains show numerous clusters of Cajal‑Retzius neurons while the PNS (stress) group shows only a 
few isolated Cajal‑Retzius neurons. Scale bars 50 μm. b Bar chart of neurons immunoreactive for reelin (expressed as neurons/mm3). Values are 
mean ± SEM. c Representative agarose gel electrophoresis showing PCR product of the amplification of the distal reelin promoter region containing 
an HpaII site (−786/−625). As control, PCR product of the amplification of Ric8B promoter (digestion insensitive to methylation) and RunX promoter 
(without HpaII sensitive regions) after digestion with HpaII or MspI. d DNA methylation differences between control and PNS (stress) groups were 
quantified by determining changes in pixel density at the bands amplified by PCR and visualized through conventional DNA electrophoresis. 
Adapted with modifications from [125]
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research will assess these undetermined issues, which 
can contribute to understanding the neurobiology of 
schizophrenia.
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