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Abstract 

The use of transgenic models for the study of neurodegenerative diseases has made valuable contributions to the 
field. However, some important limitations, including protein overexpression and general systemic compensation for 
the missing genes, has caused researchers to seek natural models that show the main biomarkers of neurodegenera-
tive diseases during aging. Here we review some of these models—most of them rodents, focusing especially on the 
genetic variations in biomarkers for Alzheimer diseases, in order to explain their relationships with variants associated 
with the occurrence of the disease in humans.
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Background
A valuably strategy for the study of neurodegenerative 
diseases like Alzheimer’s disease (AD), has been the use 
of transgenic mice bearing a particular human allele, to 
evaluate its pathogenic potential [43]. Unfortunately, 
most transgenic models don’t recapitulate the full spec-
trum of a particular disease and require protein overex-
pression. Although new knock-in mouse models promise 
to show a more realistic and faithful progress of human 
diseases [85], nevertheless the short life of mice still pre-
vents an accurate association between age and sporadic 
diseases. Therefore, a promising alternative approach is 
the search for non-transgenic models (NTM), in which 
the main hallmarks of a pathological phenotype appear 
naturally during aging [15]. More recently, the extraordi-
nary advent and growth in genomic information has lead 
to the availability of complete genomes from a large num-
ber of different species. The latter offer a unique opportu-
nity to investigate the involvement of particular genes in 
different diseases, in NTM. So it is possible today to ask, 
What might be the genetic basis of a neuropathology? 

What would be the importance of inherited or risk genes 
for the start and/or progress of AD pathology?

Here we review NTM of neurodegeneration and use 
published genomes to compare the sequences of specific 
gene variants in relation to idiopathic or sporadic form of 
AD (SAD). The latter in order to identify in NTM of AD 
gene sequences (tau, APOE, APP, PSEN, Aβ) correspond-
ing to gene variants for causing AD in human.

Genes implicated in familial Alzheimer´s disease
AD in its familial (early onset) or sporadic (late onset) 
form is characterized by the occurrence of a series of crit-
ical biomarkers. Among these the main indicators of neu-
ral degeneration, including synaptic failure and cognitive 
decline [88] are the accumulation of phosphorylated tau 
protein, which form neurofibrillary tangles (NFT), and 
the overexpression of amyloid precursor protein (APP), 
which leads to the accumulation of Amiloid-β (Aβ) pep-
tide in senile plaques,

APP is an integral membrane protein present in the 
brain [50] and has been related to diverse functions 
including cell adhesion, growth factor and signaling 
associated with synaptogenesis and synaptic plasticity 
[98]. The proteolytic processing of APP releases poten-
tially neurotoxic species, e.g., the Aβ peptide, which is 
considered one of the key pathogenic events in AD. The 
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deregulation of both APP and Aβ has been linked to 
the hereditary or familial form of AD (FAD). For exam-
ple, the Aβ peptide is present in meningovascular brain 
deposits in AD and in Down syndrome patients [46, 
47], and is also a main component of senile plaques [49, 
71, 89]. The cloning of the APP gene [58] showed that 
more than 20 mutations are associated to FAD. APP 
belongs to a conserved superfamily, which in mam-
mals includes APP and the APP-like proteins, APLP1 

and APLP2 [25]. APP isoforms 770, 751, and 695 resi-
dues in length, are produced by alternative splicing 
of exons 7 and 8 [90], the latter being the most abun-
dant form in neurons [51]. A comparative analysis of 
APP revealed the existence of an important number 
of conserved amino acids [57]; Fig.  1). The Aβ region 
differs by 3 amino acids in rodents vs. humans (R5G, 
Y10F and H13R). In fact, the presence of these residues 
affects APP processing through its aminoacid oxidation 

Fig. 1 Phylogenetic analysis of 4 proteins involved in Alzheimer disease. a Phylogenetic tree of Aβ. The tree shows that the sequence for the degu 
is identical to that of the mole rat and is more similar to that of human and guinea pig than it is to that of the rat. b Phylogenetic tree of ApoE, 
showing that degu ApoE is more similar to the human protein than it is to rat ApoE. c Phylogenetic tree of Presenilin 1. The tree shows that the 
sequence for the degu is grouped with that of the mole rat and the guinea pig and is separate from the human and mouse lemur grouping. As 
occurs for Aβ and ApoE proteins, the Presenilin 1 sequence for the rat is outside of both groupings. d Phylogenetic tree of tau. In this case, the 
sequence for the rat is grouped with that of other rodents. e Multiple alignment of Aβ shows the three aminoacids (boxed) that differ between the 
rat and the other species; by contrast there is only one difference between degu and human APP sequence (H684R). f Multiple alignment of ApoE. 
There is a single difference between human ApoE3 and ApoE4 alleles (C112R, boxed); interestingly, this ApoE4 variant is the one that is present in all 
the other species. Aβ mouse lemur sequence is absent in the phylogram showed in a, because it was not available at the time of analysis
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induced by free radical generation systems and the sub-
sequent generation of cross-linking protein interac-
tions [37]. Interestingly, it has been suggested that the 
absence of these residues in Aβ rodent makes it less 
prone to forming amyloid aggregates [41, 77]). These 
differences between species could also provide protec-
tion against β-secretase processing [28]. This may also 
be the reason why the transgenic mouse model of AD 
requires human APP to be over-expressed in order to 
cause the AD pathogenesis, a feature that limits the 
utility of such models [32, 45].

Other proteins involved in FAD are presenilins [87]. 
Mutations in the presenilin 1 gene (PSEN1) are present 
in certain families with clinical early onset AD [93], 
whereas mutations in the presenilin 2 gene (PSEN2) 
appear to lead to AD at a more advanced age [23, 64, 
83]. Presenilins are catalytic proteins of γ-secretase 
complexes responsible for producing Aβ from APP [52]; 
thus, mutations in PSEN1 and PSEN2 affect the genera-
tion of Aβ peptide [13, 22, 27, 35, 40, 95]. To date, over 
180 mutations in PSEN1 and 15 mutations in PSEN2 
have been reported with potential pathogenicity related 
to AD. Remarkably, the incorporation of transgenes 
bearing missense mutations in presenilins in APP trans-
genic mice seems to accelerate the processing and pro-
duction of Aβ [35, 53].

The search in human cerebrospinal fluid for pro-
teins that could bind Aβ peptides led to the identifica-
tion of apolipoprotein E (ApoE), which was classified 
as a genetic risk factor in SAD [97]. There are three 
alleles of ApoE: ApoE2, ApoE3, and ApoE4. The age 
of onset of AD decreases with increasing copies of the 
ApoE4 allele [24, 84] such that, for example, homozy-
gosity for this allele increases the risk of AD 12-fold 
[24, 39]. Nevertheless, the inheritance of ApoE4 is not 
sufficient for the development of AD. Interestingly, 
the deletion of the two copies of mouse ApoE in APP 
transgenic mice causes a reduction in amyloid accu-
mulation [4] and APP mice expressing human ApoE3 
or ApoE4 develop less Aβ deposits than do animals 
without ApoE [54].

Another key factor for AD is the microtubule binding 
protein, tau, for which its hyperphosphorylated form is a 
component of neurofibrillary tangles (NFT) [60, 73, 102]. 
NFT are present in both familiar and sporadic forms of 
AD; however, to date specific mutations in the MAPT 
gene haven’t been associated with AD, suggesting that the 
tau pathology occurs downstream of the detrimental cas-
cades caused by Aβ. Tau depositions are also associated 
with a number of other tauopathies, including fronto-
temporal dementia (FTD), Pick disease, and corticobasal 
degeneration [91]. Several mutations have been identified 
in tauopathies [100], which have then been used to gener-
ate transgenic mice for the study of this class of diseases 
[6]. Furthermore, a transgenic tau mouse related to FTD 
and bearing mutations in APP and PSEN1, have provided 
evidence that amyloid deposition develops prior to tangle 
pathologies [74] and that memory deficits are related to 
increases in Aβ [82].

Natural models of AD
During the last decades, and prompted by an under-
standing of the genetic basis of AD, several transgenic 
mice models have been developed that attempt to recre-
ate sequence variants associated with FAD [36]. Moreo-
ver, newer knock-in mice models  show a more realistic 
development of AD avoiding the overexpression of APP 
and of APP fragments such as Aβ, by showing a   more 
precise pattern of expression [21, 65, 85]. However, 
despite these advantages the limited lifespan of mice 
precludes the appropriate analysis of these models in 
the context of normal aging. Nevertheless, the advent of 
modern genetics and bioinformatics has led to a more 
comprehensive characterization of the genomes of ani-
mal models and has facilitated the search of NTM for 
which aging is associated with neurodegeneration [68]. 
Below, we describe some NTM that are relevant for the 
study of AD (Table 1).

Microcebus murinus (gray mouse lemur) is a small noc-
turnal primate native to Madagascar that reaches the age 
of 8–14 years in captivity. Interestingly, at 5 years of age, 
20  % of M. murinus show morphological signs of brain 

Table 1 Natural animal models of AD

Model Lifespan Neuropathology Reference

Naked mole-rat 28–32 years Decreased Tau phosphorylation and amyloid-β accumulation starting at 3 months of age [38, 76]

Mouse lemur 10–15 years Senile plaques and neurofibrillary tangles present in cortex at 9 years of age, and hippocam-
pus at 10 years. Procedural memory is normal, but executive function is altered at 7–11 years

[79, 94]

Octodon degus 10–12 years Amyloid-β oligomers are present at 6 months, amyloid plaques and neurofibrillary tangles 
starting at 6 years of age. Synaptic dysfunction occurs prior to the detection of plaques and 
tangles

[2, 3, 55]

Guinea pig 5–8 years Amyloid-β deposition and Tau phosphorylation present in frontal cortex at 4 years of age [7]
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neurodegeneration [61] and cognitive decline [78, 79] 
that are similar to those of humans with AD [12, 31]. 
These signs include the accumulation of Aβ plaques in 
15 % of the adult population, the formation of NFT [44, 
63], and the loss of cholinergic neurons [72]. In M. muri-
nus the gene responsible for the formation of Aβ plaques 
shows high sequence similarity with the human allele 
[12], and 92,7 % similarity with human ApoE4 allele [18] 
(Fig.  1). However, Aβ deposits and plaques have a dif-
ferent distribution in humans: they occur first in hip-
pocampus, whereas in M. murinus they are first detected 
in other cortical areas [44]. These signs have allowed 
the population of old M. murinus to be classified into 4 
groups: (i) animals presenting amyloid plaques without 
(5–10 %) or (ii) with a tauopathy (1 %); (iii) animals pre-
senting tauopathy in the absence of amyloid plaques (1 %) 
and (iv) animals with no lesions (80–90  %). These data 
suggest that most of the mouse lemurs undergo a normal 
aging, whereas some of them show this age-associated 
pathology [63].

Another interesting species is Cavia porcellus (Guinea 
pig), a rodent native to the Andes Mountains. The aged 
guinea pig presents well-described, diffuse, amyloid-β 
deposits in the region of the hippocampus [7]. Interest-
ingly its APP is highly homologous to the human pro-
tein (97 %) [10], and is processed in a similar way in vitro 
[9]. The APP695 variant is the most abundant form in 
the brain, whereas the longest isoforms are primar-
ily expressed in peripheral organs [10]. High sequence 
similarity between human and guinea pig PSEN1 has 
also been documented, highlighting guinea pig as a good 
model for SAD [92]. However, the presence of senile 
plaques and neurofibrillary tangles and their correla-
tion with cognitive and synaptic impairments has not yet 
been reported for the aged guinea pig brain.

The naked mole-rat (Heterocephalus glaber) (NMR) is 
a small rodent with a lifespan of over 30  years in cap-
tivity [16]. It presents early signs of neurodegeneration 
related to vitamin D deficiencies [17] and high levels of 
oxidative stress [1]. Moreover, appreciable levels of Aβ 
can be detected, and its sequence differs in only one 
amino acid with that of the human protein. Remarkably 
the mole rat brain acquires and tolerates high levels Aβ, 
but does not form plaques [38]. Moreover, tau phospho-
rylation levels rise during the early stages of life, result-
ing in an increase in molecular weight, reaching 88 kDa 
in the first year of life. This increase in phosphorylation 
declines at the end of development but occurs through-
out life. Unlike other transgenic models such as 3xTgAD 
the phosphorylation in NMR is specifically localized in 
the axonal region but not in the somatodendritic com-
partment, where synaptic alterations could be generated 
[76]. Although phosphorylation is related to the loss of 

stability of microtubules, in NMR it is a tightly regulated 
kinase mechanism and it is essential for maintaining the 
dynamics of the cytoskeleton [76]. Interestingly, NMR 
tau protein is very similar to human tau (95 % similar-
ity) and shows 100 % identity in the microtubule-bind-
ing domain, suggesting the inmportance of the location 
and regulation of the phosphorylation processes and 
not the sequence per se.

Octodon degus (degu) is a rodent native of South 
America, belonging to the Octodontidae family [96]. 
The Octodon genus includes three species: O. degu, 
O. lunatus, and O. bridgesi and is related to the Chin-
chilloidea and Cavioidea (e.g. guinea  pig) families [75]. 
During aging degus present intracellular and extracel-
lular deposits of Aβ, intracellular accumulations of tau-
protein, and strong astrocytic responses, suggesting 
that they represent a natural model for sporadic AD 
[55, 56]. More recently, Van Groen et al. [99] has shown 
that 6  year-old degus have Aβ and tau deposits in the 
hippocampus, and in the blood vessel walls. We have 
demonstrated that degu develops synaptic changes 
related to AD, which explains the early impairments 
in cognitive and neural plasticity observed before the 
appearance of fibrillar deposition [3]. We have also 
shown that the memory of degu declines during aging, 
correlated with an increase in the levels of soluble Aβ, 
in particular the Ab*56 oligomer. In a small number 
of cases, very old degus (7–9  years old) also seems to 
develop Aβ plaques, similar to what occurs in naked 
mole rats. Interesting, more recently we have shown 
that the retina (which is also part of the nervous sys-
tem) of aged degus presents, as does the  brain, the 
main hallmarks of AD [34].

The draft genome of the degu has recently been com-
pleted at the Broad Institute (Boston) and some impor-
tant questions can now be addressed, such as the 
presence and homology of genes involved in the famil-
ial, or risk forms of human AD. Here we used this pre-
liminary information to carry out bioinformatics analysis 
comparing genomic sequences of NTM.

Methods
Genomes
The species and protein sequence IDs used for this 
analysis were: Aβ (from APP sequence): Homo sapi-
ens P05067.3, Cavia porcellus Q60495.2, Octo-
don degus XP_004627753.1, Heterocephalus glaber 
XP_004842285.1, Rattus norvegicus P08592.2; ApoE: 
Homo Sapiens P02649.1, Cavia porcellus P23529.1, 
Octodon degus XP_004644379.1, Heterocephalus 
glaber XP_004910131.1, Microcebus murinus ENS-
MICP00000012801, Rattus norvegicus NP_001257613.1; 
Tau: Homo Sapiens P10636.5, Cavia porcellus 
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XP_003465958.1, Octodon degus XP_004630049, Het-
erocephalus glaber EHB10652.1, Microcebus murinus, 
ENSMICP00000004446, Rattus norvegicus P19332.3; 
Presenilin 1: Homo Sapiens P49768.1, Cavia porcellus 
XP_003472446.1, Octodon degus XP_004624901.1, Het-
erocephalus glaber XP_004837306.1, Microcebus murinus 
CAA95930.1, Rattus norvegicus NP_062036.2.

Results and discussion
Phylogenetic trees
Multiple alignments followed by neighbor-joining analy-
sis in order to generate the phylogenetic trees were per-
formed using the Clustal X2 program as shown in Fig. 1.

AD is a neurodegenerative condition and is the main 
cause of dementia that affects over 24 millions of peo-
ple worldwide [11]. AD occurs in two forms, the rare 
early-onset genetic or familial Alzheimer’s disease (FAD) 
which represents <1 % of diagnosed cases, and the fre-
quent late-onset form or sporadic Alzheimer’s disease 
(SAD) [11]. Transgenes bearing mutations in genes 
linked to human FAD have been incorporated into mice 
to model the disease, and have provided valuable infor-
mation about the neuropathology of the disease [36]. 
However, one difficulty associated with the use of this 
short-lived model is that aging is a main risk factor for 
AD. For this reason, it is imperative to search for long-
lived animal models that can be used to study the neuro-
pathology of AD.

Here we analyzed, for several natural models (naked 
mole, guinea pig, degus) as explained in the introduc-
tion, the sequences of proteins that have traditionally 
been associated with AD. These include ApoE, tau, Pre-
senilins and Aβ (APP). In the resulting phylogenetic trees 
or phylograms, the length of the branches represents the 
amount of change in a sequence with respect to a com-
mon ancestor [8]. Our results show different relation-
ships between species for some important markers of 
AD. Thus, we found that the degu is grouped with the 
mole rat and the guinea pig in all analyses; interestingly, 
the Aβ sequence for the guinea pig is identical to that of 
the human, because it includes a histidine at position 13 
instead of the arginine, as occurs in other rodents. How-
ever, the most important change is likely to be H13R that 
is a critical residue for the aggregation of the Aβ [66]. 
Degu Aβ presents high homology with the human pro-
tein, differing in only one amino acid; this supports the 
hypothesis that the occurrence of amyloidogenic cascade 
is associated with the presence of Aβ oligomers [3] and 
amyloid deposits in older animals [55]. However, we also 
note that the mole rate shows 100 % homology (Fig. 1), 
presents high levels of Aβ [38], but does not show amy-
loid deposits. It will be important to determine if this 
rodent shows alteration in memory processes, which 

would establish it as a model of neurodegeneration and 
memory impairments in the absence of amyloid plaque. It 
will also be important to understand the markers present 
in  the degu, as this rodent shows memory and synaptic 
impairments, and an accumulation of soluble amyloid 
oligomer but appears not to develop amyloid plaques.

Although our results for Presenilin 1 show a greater 
relatedness between the isoforms of human and, degu, 
guinea pig, and mole rat, compared to those of others 
rodents such the rat (Fig.  1c), there are more than 150 
mutations in these proteins associated with Familial AD 
[26]; for this reason we need to perform more detailed 
analysis for each mutation to establish differences in 
the presence of potentially mutagenic variants in each 
of these species. Nevertheless, it should be noted that 
D257 and D385, two essential aminoacids of the cata-
lytic site [101], are conserved in all species. In addition 
the aminoacid alanine 246, for which the substitution 
for a glutamate is associated with increased deposition 
of beta amyloid in transgenic models of AD [14], is also 
conserved in all species of this study. Interestingly, Shar-
man et al. reported that the S212Y mutation occurring in 
transmembrane domain 4 of PSEN1, and which was pre-
viously identified in a family with FAD [81], is conserved 
in guinea pig [92]. Additionally, a normal truncated 
PSEN2 isoform termed PS2V, which in humans has been 
implicated in AD [86], is also present in guinea pig but is 
absent in mice and rats [92], further confirming the close 
similarity between guinea pig and human presenilins.

In humans the ApoE gene has different isoforms that 
can be related to the occurrence of sporadic AD. These 
isoforms differ only in the variation of two amino acids 
and are designated as ApoE 2 (Cys112, Cys158), ApoE 3 
(Cys112, Arg158), and ApoE4 (Arg112, Arg158). Within 
these isoforms ApoE 4 has been described as the major 
risk factor in sporadic late onset Alzheimer’s disease 
(LOAD) [67], where homozygosity for the E4 allele may 
be sufficient to develop AD at the age of 80  years [24]. 
This allele has a single amino acid change with respect to 
the E3 allele (C112R) [24]. ApoE is fundamental for the 
regulation of clearance and deposition of Aβ in the brain, 
which may explain its association with sporadic cases of 
AD [67]. Studies in HEK-293 cells demonstrate that the 
binding between ApoE and Aβ is less effective for ApoE4 
than ApoE3 [62]. On the other hand ApoE can disrupt 
the clearance of Aβ from brain mouse in an isoform spe-
cific manner [30]. These findings suggest that the differ-
ences in the amino acids between the three isoforms of 
ApoE can fundamentally affect its role in the regulation 
of Aβ.

Surprisingly, we found that degu have the arginine 
substitution present in the ApoE4 pathogenic human 
allele. In addition, our results show that, in the sequence 
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of human of ApoE 3, the amino acid at position 112 is a 
cysteine, unlike degu and other rodents, which have an 
arginine at this position as is found in the human ApoE4 
form. These data would suggest that this protein could 
potentially be pathological for the rodents. However all 
rodents have this amino acid, not only those that show 
sporadic AD such as the degu. Thus, the functional con-
sequences of these substitutions await further sequence 
and protein structure analyses.

One possible explanation for this anomaly arises from 
the fact that ApoE has a region that is essential for bind-
ing lipids. In humans, this region has a glutamate at posi-
tion 255 that is critical for the structure of the “toxic” 
E4 allele because it generates an ionic interaction with 
Arg61 that changes the position of the lipid binding 
region and the protein structure. On the other hand, the 
presence of Cys112 in the E3 allele leads to an interaction 
between this amino acid and Arg61, causing Glu255 and 
Arg61 not to form the interaction that occurs in E4 [69]. 
Studies in cell culture show that the substitution of an 
Arg at position 61 for a Thr generates a disruption in the 
interaction with Glu255, generating an E3 like structure 
[103]. In the case of rodents such as degu this amino acid 
is a Thr so an interaction with the lipid binding region 
would not possible despite the presence of Arg112. Thus, 
the presence of Arg112 may not be a “toxic” substitution 
in rodents. However, it is clear that amino acids Thr61, 
Arg112, and Glu255 are important for maintaining the 
function of ApoE. More research is needed to determine 
the presence of polymorphisms in these and other amino 
acids that can account for potential pathogenic substitu-
tions that are present in models of sporadic AD such as 
degu.

On the other hand, it has been speculated with the 
possibility of certain “protective” polymorphisms in the 
case of human ApoE, since that inheritance of ApoE2 has 
been associated with a decrease in the AD risk [39]. This 
allele has a lower affinity to LDL compare to other alleles 
[42], leading to a decrease in their clearance resulting in 
an increase in plasma, cerebrospinal fluid and brain lev-
els [70]. That increase in ApoE2 availability in the brain 
could explain the greater Aβ clearance observed in 
human and mice models. [5, 20]. In the E2 allele, Cys158 
causes Asp154 to now interact with Arg150, thus modify-
ing the LDL binding domain [33]. By contrast, in the E3 
allele the amino acid Arg158 forms a salt bridge interac-
tion with Asp154, which does not affect the LDL binding 
domain (amino acids 134–150).

In degu, the amino acids at these positions are those 
present in the E3 allele (Arg150, Asp 154, Arg158). Thus, 
it will also be necessary to determine the presence of dif-
ferent protective polymorphisms in this rodent. Con-
sistent with this, brain levels of ApoE are altered (in the 

frontal cortex and hippocampus) depending on ApoE 
genotype, where animals homozygous for the E4 allele 
have lower protein levels than those with the E3 allele, 
which in turn are lower than those with the E2 allele 
[80]. Genetic and crystallographic research is needed 
to understand the consequences of each of the various 
polymorphisms on ApoE protein structure and function. 
It will also be important to determine how hetero- and 
homozygosity for the different ApoE alleles might affect 
the onset of sporadic of AD in the degu.

Interestingly, a recent report by Deacon et  al. [29] 
shows that poor-burrower degus have high levels of  
Aβ1–42, APOE, and APP, cytokine TNF-α and oxidative 
stress marker NFE2L2 compared to good-burrowers 
degus. This  result, although preliminary, suggest that 
degus present increased inflammation during aging and 
AD like diseases, adding a new group of protein targets to 
be considered in this type of bioinformatics analysis.

Regarding the tau protein, we found that for all 
rodents its sequences are grouped in a branch of the tree 
that is separate from that for lemurs and humans (Fig. 1), 
which show the highest similarity [76]. Since there is no 
evidence for a link between polymorphisms in tau and 
risk of AD, and the SNPs identified in the MAPT gene 
do not influence the risk of AD [59], we cannot extrapo-
late much from these data. However, the regulation of 
MAPT transcriptional splicing is known to be critical 
for normal tau function [48]. It has also been shown that 
an imbalance in the ratio of tau isoforms with 3 (3R) vs. 
4 (4R) repeats, which are derived from the alternative 
splicing of Exon10 of the human MAPT, is associated 
with AD and Tauopathies [19]. In this regard, guinea 
pig show both 3R and 4R tau isoforms and, interestingly, 
under cholesterol intake, guinea pig shows an increase in 
3R isoforms suggesting a relationship between AD risks 
factors and AD in guinea pig [92]. It would be interesting 
to determine if the 3R/4R ratio also is disturbed in the 
other NTM’s.

Overall, our analyses reveal that the sequences of genes 
associated with AD risk are more similar to human in 
NTM than in rat or mouse, explaining why the biomark-
ers encoded by these genes appear during aging in NTM. 
The fact that the temporary or regional expression of 
these markers differ between the different models dis-
cussed here provide an opportunity to explore different 
factors that can accelerate the progress of AD-related 
pathological events. The understanding of these pro-
cesses also provides a unique opportunity to explore new 
drugs or therapeutic strategies against this devastating 
disease.
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